Artificial Intelligence

Module 2: Automated Problem Solving

PART 2.1: Intelligent Agent & Environment

(Slides adapted from StuartJ. Russell, B Ravindran, Mausam, Prof. Pallab Dasgupta, Prof. Partha Pratim Chakrabarti, Saikishor Jangiti

Module 2: Automated Problem Solving

- PART 2.1: Intelligent Agent & Environment
 - Agent : Intelligent agent
 - Rational Agents
 - Task environments: PEAS
 - Environment
 - Structure of Agents
- PART 2.2: Complex Problems and AI
- PART 2.3: Problem Solving Methods

Identify

Intelligent Agents

- What is an agent ?
 - An agent is anything that can be viewed
 - as perceiving its environment through sensors and
 - acting upon that environment through actuators
 - Example:
 - Human Agent:
 - eyes, ears, and other organs for sensors;,
 - Hands, legs, mouth, and other body parts for actuators
 - Robotic Agent:
 - cameras and infrared range finders for sensors;
 - various motors for actuators
 - A thermostat detecting room temperature.

A vacuum-cleaner agent

Rational agents

- What is rational at any given time depends on four things:
 - The performance measure that defines the criterion of success.
 - The agent's prior knowledge of the environment.
 - The actions that the agent can perform.
 - The agent's percept sequence to date.

DEFINITION OF A RATIONAL AGENT

- For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.
- Rationality vs omniscience

Example of a rational agent

- Performance measure : An objective criterion for success of an agent's behavior
 - Awards one point for each clean square
 - at each time step, over 10000 time steps
- Prior knowledge about the environment
 - The geography of the environment
 - Only two squares
 - The *effect* of the actions
- Actions that can perform
 - Left, Right, Suck and NoOp
- Percept sequences
 - Where is the agent?
 - Whether the location contains dirt?
- Under this circumstance, the agent is rational.

Learning

- Does a rational agent depend on only current percept?
 - $-\,$ No, the past percept sequence should also be used
 - This is called learning
 - After experiencing an episode, the agent
 - should adjust its behaviors to perform better for the same job next time.
- If an agent just relies on the prior knowledge of its designer rather than its own percepts then the agent lacks *autonomy*
- <u>A rational agent should be autonomous- it should learn what it can to compensate for partial or incorrect prior knowledge.</u>
- E.g., a clock

11

- No input (percepts)
- Run only but its own algorithm (prior knowledge)
- No learning, no experience, etc.

Software Agents

- Sometimes, the environment may not be the real world
 - E.g., flight simulator, video games, Internet
 - They are all artificial but very complex environments
 - Those agents working in these environments are called
 - Software agent (softbots)
 - Because all parts of the agent are software

Task environments : Performance measure

Performance measure

- How can we **judge** the automated driver?
- Which factors are considered?
 - getting to the correct destination
 - minimizing fuel consumption
 - minimizing the trip time and/or cost
 - minimizing the violations of traffic laws
 - maximizing the safety and comfort, etc.

13

PEAS - Automated taxi driver

- Performance measure:
 - Safe, fast, legal, comfortable trip, maximize profits, impact on other road users
- Environment:
 - Roads, other traffic, pedestrians, customers, weather
- Actuators:
 - Steering wheel, accelerator, brake, signal, horn, display, speech
- Sensors:
 - Cameras, radar, sonar, speedometer, GPS, odometer, engine sensors, microphones, touchscreen

PEAS - Medical diagnosis system

- Performance measure: Healthy patient, minimize costs, lawsuits
- Environment: Patient, hospital, staff
- Actuators: Screen display (questions, tests, diagnoses, treatments, referrals)
- Sensors: Keyboard (entry of symptoms, findings, patient's answers)

Environment types

- Fully observable (vs. partially observable):
 - If an agent's sensors give it access to the complete state of the environment at each point in time then the environment is <u>effectively and fully observable</u>
 - if the sensors detect all aspects
 - That are relevant to the choice of action
- Unobservable :

17

- If the agent has no sensors at all

Partially observable:

 Due to noisy and inaccurate sensors, parts of the state are simply missing from the sensor data.

Example:

• A local dirt sensor of the cleaner cannot tell Whether other squares are clean or not

Environment types

- Deterministic (vs. stochastic):
 - The next state of the environment is completely determined by the current state and the action executed by the agent, otherwise, it is Stochastic.
 - (If the environment is deterministic except for the actions of other agents, then the environment is strategic)
 - -Cleaner and taxi driver are:
 - Stochastic because of some unobservable aspects \rightarrow noise or unknown

Environment types

- Episodic vs. sequential
 - The agent's experience is divided into atomic "episodes"
 - An episode = agent's single pair of perception & action
 - Eg: spot defective parts on an Assembly line
 - The quality of the agent's action does not depend on other episodes
 - Every episode is independent of each other
 - Episodic environment is simpler
 - The agent does not need to think ahead
- Sequential Environment
 - Current action may affect all future decisions
 - Ex. Taxi driving and chess.

Environment types

Semidynamic

• Static vs. dynamic

- The environment is unchanged while an agent is deliberating.
- Agent need not keep looking at the world while deciding an action nor need it worry about the passage of time.
- A dynamic environment is always changing over time
 E.g., Taxi driving : the number of people in the street

Football pla

environment is not changed over time

- but the agent's performance score does

- Eg: Chess when played with a clock is

Environment types

- Discrete (vs. continuous):
- If there are a limited number of distinct states, clearly defined percepts and actions, the environment is discrete

VS

- E.g., Chess game
- Continuous: Taxi driving

Environment types

- Single agent (vs. multiagent):
- An agent operating by itself in an environment.
 - Playing a crossword puzzle single agent
 - Chess playing two agents
 - Competitive multiagent environment
 - Chess playing
 - Cooperative multiagent environment
 - Automated taxi driver
 - Avoiding collision

Environment types

- Known vs. unknown
- This distinction refers not to the environment itslef but to the agent's (or designer's) state of knowledge about the environment.
 - In known environment, the outcomes for all actions are given.
 - example: solitaire card games
- If the environment is unknown, the agent will have to learn how it works in order to make good decisions.
 - example: new video game.

	Exam	f task e	nviroi	nmen	Properties of the Task				k Envir			
	Task Environment	Observable	Deterministic	Episodic	Static	Discrete	Agents			Partially vs. Fully	Environment	Static vs.
The er deter	Crossword puzzle Chess with nent typ	e larger design	Deterministic Strategic	Sequential Sequential	Static Semi	Discrete Discrete	Single Multi		× 78.	Observable	Contraction of the second	Dynamic
	nyiron the agent	Partially Fully	Strategic Stochastic	Sequential Sequential	Static Static	Discrete Discrete	Multi Multi		Perfectec	Discrete vs.		Episodic v Sequentia
	Taxi driving Medical diagnosis	Partially Partially	Stochastic Stochastic	Sequential Sequential	Dynamic Dynamic	Continuous Continuous	Multi Single		erceptii	Continuous		
	Image-analysis Part-picking robot	Fully Partially	Deterministic Stochastic	Episodic Episodic	Semi Dynamic	Continuous Continuous	Single Single		م	Full vs. Partial	Single vs. <i>I</i> Agents	Nultiple
	Refinery controller Interactive English tutor	Partially Partially	Stochastic Stochastic	Sequential Sequential	Dynamic Dynamic	Continuous Discrete	Single Multi		L	Satisfaction	JAN .	

• The real world is : partially observable, stochastic, sequential, dynamic, nondeterministic, continuous, multi-agent . How do we handle it then?

25

ronment

Structure of agents

- Agent = architecture + program
 - Architecture = some sort of computing device (sensors + actuators)
 - (Agent) Program = some function that implements the agent mapping = "?"
 - Agent Program = Job of AI

27

Pac-Man as an Agent

Pac-Man is a registered trademark of Namco-Bandai Games, used here for educational purposes

Pac-Man : Video of Demo Reflex Optimal **Planning Agents** Ask "what if" *Not Good for other Cases* • Decisions based on (hypothesized) consequences of actions 🗉 💣 Pyder 🕫 • Must have a model of how the world evolves in response to actions • Must formulate a goal (test) . • Consider how the world WOULD BE Optimal vs. Complete planning ٠ • Planning vs. replanning • Simulate many games, execute one. Doesn't do it in the world, does it in the model. - Complete - a solution; optimal - best ' 37 38 Demo Plan slow (Mastermind Pac-Man) Video of Demo Plan fast ('replanning') Tenngate Starch Project Run Window Help B • O • O • Q • B # • B • B • B • B • C • • • E Pydev 80 ा **ह** गुरू हो = × % % ज ज ज ज ज • ११ • ११ 0-0-Q- 0-- G- 1-----. SCORE: 0 - x % & BEE d - d - ' SCORE: 0 😰 जे। 😂 📖 🔳 🔊 JI 🖉 🚞 🔳 39 40

Model-based reflex agents

- Also known as State based Reflex Agents
- For the world that is partially observable
 - the agent has to keep track of an internal state
 - That depends on the percept history
 - Reflecting some of the unobserved aspects
 - E.g., driving a car and changing lane
- Based on state of the world and knowledge (memory), it triggers actions through the effectors
- Requiring two types of knowledge
 - How the world evolves independently of the agent
 - How the agent's actions affect the world

Goal-based agents

41

- Current state of the environment is always not enough
- The goal is another issue to achieve
 - Judgment of rationality / correctness
- Actions chosen \rightarrow goals, based on
 - the current state
 - the current percept
- Goal-based agents are less efficient but more flexible
 - $Agent \leftarrow Different goal \leftarrow different tasks$
- Search and planning
 - $-\,$ two other sub-fields in AI
 - $-\;$ to find out the action sequences to achieve its goal

Utility-based agents

- Goals alone are not enough
 - to generate **high-quality** behavior
 - E.g. meals in Canteen, good or not?
- Many action sequences \rightarrow the goals
 - some are better and some worse
 - If goal means success,
 - then **utility** means the degree of success (how successful it is)
- It is said state A has higher utility
 - If state A is more preferred than others
- Utility is therefore a function
 - that maps a state onto a real number
 - the degree of success

Utility-based agents

- Utility has several advantages:
 - When there are conflicting goals,
 - Only some of the goals but not all can be achieved
 - utility describes the appropriate trade-off
 - When there are several goals
 - None of them are achieved certainly
 - utility provides a way for the decision-making

Utility-based agents

Learning Agents

48

- After an agent is programmed, can it work immediately?
 - No, it still need teaching
- In AI,

45

- Once an agent is done
- We teach it by giving it a set of examples
- Test it by using another set of examples
- We then say the agent learns
 - A learning agent

Learning Agents

- Four conceptual components
 - Learning element
 - Making improvement
 - Performance element
 - Selecting external actions
 - Critic
 - Tells the Learning element how well the agent is doing with respect to fixed performance standard.
 - (Feedback from user or examples, good or not?)
 - Problem generator
 - Suggest actions that will lead to new and informative experiences.

50

Three broad categories of ML

Google Data Centre Cooling

Learning Agents

- DeepMind AI Reduces Google Data Centre Cooling Bill by 40%
- Optimal operation of pumps, chillers and cooling towers
- Compared to five years ago, Google get around 3.5 times the computing power out of the same amount of energy

Reference: Emilie Kaufmann et al. Adaptive Reward-Free Exploration https://arxiv.org/pdf/2006.06294.pdf

51

Ideal Rational Agent

• For each possible percept sequence, does whatever action is expected to maximize its performance measure on the basis of evidence perceived so far and built-in knowledge

What is Artifical Intelligence

- Algorithmic view
 - A large number if problem are NP hard
 - AI develops a set of tools, heuristics,
 - to slove such problems in practice
 - for naturally occurring instances
 - Search
 - Game Playing
 - Planning

-

Agent design The environment type largely determines the agent design • Partially observable => agent requires memory (internal state) Stochastic => agent may have to prepare for contingencies • • Multi-agent => agent may need to behave randomly Static => agent has time to compute a rational decision • Continuous time => continuously operating controller • • Unknown physics => need for exploration • Unknown perf. measure => observe/interact with human principal 54 **Complex Problems** Our aim is to solve all type of problems

Search Problems Are Models Conclusion 58 References Next • Slides adapted from CS188 Instructor: Anca Dragan, University of California, Berkeley • Module 2: Automated Problem Solving Slides adapted from CS60045 ARTIFICIAL INTELLIGENCE - PART 2.1: Intelligent Agent & Environment - PART 2.2: Complex Problems and AI - PART 2.3: Problem Solving Methods (some slides adapted from http://aima.cs.berkeley.edu/) 60