Artificial Intelligence

Module 3: Search Strategies

PART 3.1: Search
PART 3.2: Uninformed Search

Dr. Chandra Prakash

Assistant Professor

Department of Computer Science and Engineering

(Slides adapted from StuartJ. Russell, B Ravindran, Mausam, Prof. Pallab Dasgupta, Prof. Partha Pratim Chakrabarti, Saikishor Jangiti

Module 3: Search Strategies

* PART 3.1: Search
* PART 3.2: Uninformed Search
— Depth First Search
— Breadth First Search
— More in Uninformed Search
* PART 3.3: Informed/Heuristic Search
* PART 3.4: Beyond Classical Search
— Local Search
— Problem Reduction
* PART 3.5: Constraint Satisfaction Problems
* PART 3.6: Adversarial Search

AUTOMATED PROBLEM SOLVING in Al

» Generalized Techniques for Solving Large Classes of Complex Problems
* Problem Statement is the Input and solution is the Output, sometimes even the problem specific
algorithm or method could be the Output
* Problem Formulation by AI Search Methods consists of the following key concepts
— Configuration or State
— Constraints or Definitions of Valid Configurations
— Rules for Change of State and their Outcomes
— Initial or Start Configurations
— Goal Satisfying Configurations
— An Implicit State or Configuration Space
— Valid Solutions from Start to Goal in the State Space
— General Algorithms which SEARCH for Solutions in this State Space
- ISSUES

— Size of the Implicit Space, Capturing Domain Knowledge, Intelligent Algorithms that work in reasonable time
and Memory, Handling Incompleteness and Uncertainty

BASICS OF STATE SPACE MODELLING

STATE or CONFIGURATION:
— A set of variables which define a state or configuration
— Domains for every variable and constraints among variables to define a valid configuration
STATE TRANSFORMATION RULES or MOVES:
— A set of RULES which define which are the valid set of NEXT STATE of a given State
— It also indicates who can make these Moves (OR Nodes, AND nodes, etc)
STATE SPACE or IMPLICIT GRAPH
— The Complete Graph produced out of the State Transformation Rules.
— Typically too large to store. Could be Infinite.
INITIAL or START STATE(s), GOAL STATE(s)
SOLUTION(s), COSTS

— Depending on the problem formulation, it can be a PATH from Start to Goal or a Sub-graph of And-ed Nodes

SEARCH ALGORITHMS

— Intelligently explore the Implicit Graph or State Space by examining only a small sub-set to find the solution

— To use Domain Knowledge or HEURISTICS to try and reach Goals faster

3 DISK, 3 PEG TOWER of HANOI STATE SPACE

All&]L

LiLLdl1dl
Molla 1=

A B c

AND / OR STATE SPACES

Assertions
And-Or Graph

lo]
.

Ej:
T
L) [

v

a0

= - Do

.ﬂ\
-q/'
=1

-

-

1

=]

=]

L

=]

OR AND

CONSISTENT LABELLING BY CONSTRAINT
SATISFACTION

Scene Analysis

CONSISTENT LABELLING BY CONSTRAINT
SATISFACTION

Instructions
* il in words from the list

List of Word:

* AN Laser
= Ale Les
* Eel Linss
* Hike Sails
* Hoses Sheet
* Kool Sl
= Knot Tie

States

MODELLING AND/OR GRAPHS:

— Full / Perfect Information and Partial Information States * OR Nodes are ones for which one has a 0 olo|x ;
. choice. X X's turn (MAX)
State Transformation Rules olx
~ Deterministic Outcomes . e nodes could be compositiona
Deterministic O The AND nodes could be compositional 2 o .
— Non-Deterministic / Probabilistic Outcomes e — ':;ziél (sum, product, min, max, etc., depending olo|x o|o|x olo|x
State Spaces As Generalized Games I on the way the sub-problems are 5 i L 5 i = >0< i
— Single Player: OR Graphs - : composed) /
. . s e b
-]\{[uln-Player‘ And / Or, Adversarial, Probabilistic Graphs o \+1 & \ o B \ i
Solutions Control Plant olo|x o|o|x o|o|x o|o[x o|o[x _©o|o|x
— Paths ' Adversarial (game where the other parties | QX[X __X|X 0IX 0 M0 XX
= . IR o[x[o o[x|x o|x[x o]x o[x|o
— Sub-graphs have a choice)
— Expected Outcomes ozt ’+1 ‘ 0 | 0 ‘ +1
Costs | or olo|x olo|x o|o|x olo|x
. . XXX x[X[0 X[X[0 X[X][X
Sizes : Probabilistic (Environmental Actions) STxa oy S alila
Domain Knowledge el o AND/OR GRAPHS: COMPOSITIONAL /
Algorithms for Heuristic Search b e ADVERSARIAL / PROBABILISTIC
SEARCHING IMPLICIT GRAPHS Measuring Search Algorithm Performance
. « Completeness :
Given the start state the SEARCH | <A>,0 | . . . o
Algorithm will create successors based — Is the algorithm guaranteed to find a solution when there is one?
on the State Transformation Rules and * Optimality :
make part of the Graph EXPLICIT. [<aB>100) [<Ac>120 <AD>200 | [<AE>190) — Does the algorithm find the optimal solution?
v

It will EXPAND the Explicit graph

INTELLGENTLY to rapidly search for
a solution without exploring the entire

Implicit Graph or State Space

For OR Graphs, the solution is a PATH

from start to Goal.

Cost is usually sum of the edge costs on
the path, though it could be something

based on the problem

N>

AN

[<aBc>175

(C<aeD>75] ([<aBE>180)

(<ABCD>,285 |

(<aBcE>z65] (L <ABDC>285 | (C<ABDE>225]

(_ <ABCDE>335]

((<aBcED>315) ((<aBDCE>375) [<ABDEC>315]

(<ABCDEA>525 |

(_<ABCEDA>515 | [<ABDCEA>,565) [<ABDECA>435]

¢ Time Complexity :
— How long does it take to find the solution?
* Space Complexity :
— How much memory is needed to perform the search?
« Possibility to backtrack
¢ Informedness

« Time and space complexity
— Search in Al is represented by initial state, actions and transitions which usually result in infinite
Nodes and Edges in a graph.Hence, the complexity is rather measured by
» Branching Factor (b): Maximum number of successors of any node
* Depth (d) of the shallowest goal, i.e., number of steps from initial node

* Maximum length (m) of any path in state space (may be «)

Search

Process of locating a solution to a problem by systematically looking
at nodes in a search tree or a search space until a goal node is found.

a class of techniques for systematically finding or constructing
solutions to problems.

Many (all?) Al problems can be formulated assearch problems!
Examples:

— Path planning

— Games

— Natural Language Processing

— Machine learning | /¢

Type of Search Methods

Search Methods

|

Informed Search \
Heuristic Search

Uninformed Search

: }

Brute force
Greedy Search/ Best first search
Breadth First Search (BFS)
A* Algo
Depth First Search (DFS)
AO* Algo

Exhaustive Search

!

Local Search

v

Hill climbing

Steepest-Ascent Hill Climbing

Simulated Annealing

Genetic Algorithm

Uninformed search strategies

Uninformed: While searching you have no clue whether one non-goal state is
better than any other. Your search is blind.

Also known as blind search

Covered problems that considered the whole search space and produced a
sequence of actions leading to a goal.

Various blind strategies:
— Brute force

— Depth-first search

— Breadth-first search
— Uniform-cost search

— Iterative deepening search

1. Brute Force /Generate-and-Test

1.
2.

Acceptable for simple problems.

— Eg : finding key of a 3 digit lock.

Inefficient for problems with large space.

Try all possibilities Algorithm

Generate a possible solution.

Test to see if this is actually a
solution.

Quit if a solution has been found.
Else, return to step 1.

Use DFS as all possible solution generated, before they can be tested.

Generate-and-Test: 8-puzzle

n

~ (0 (=
[+]

o |& W

2. Depth First Search (DFS)

Algorithm:
1. [Initialize] Initially the OPEN List contains the
Start Node s. CLOSED List is Empty.
2. [Select] Select the first Node n on the OPEN List.
If OPEN is empty, Terminate
3. [Goal Test] If n is Goal, then decide on
Termination or Continuation / Cost Updation
4. [Expand]
a) Generate the successorsn_1,n_2, n_k, of
node n, based on the State Transformation Rules
b) Put n in LIST CLOSED
¢) For each n_i, not already in OPEN or CLOSED
List, put n_i in the FRONT of OPEN List
d) For each n_i already in OPEN or CLOSED
decide based on cost of the paths
5. [Continue] Go to Step 2

Backtracking

A variant of depth-first search

In this search, we pursue a single branch of the tree until it
yields a solution or until a decision to terminate the path is
made.

It makes sense to terminate a path if it reaches dead-end,
produces a previous state. In such a state backtracking
occurs

Chronological Backtracking:

— Order in which steps are undone depends only on the temporal
sequence in which steps were initially made.

— Specifically most recent step is always the first to be undone.
— This is also simple backtracking.

‘generating node 7

®)

Depth-First Search

Strategy:
* expand a deepest node first
Implementation:

* Fringe is a LIFO stack

Generation of the First Few Nodes in a Depth-First Search

Depth-First Search Recall : Search Algorithm Properties
* Complete: Guaranteed to find a solution if one exists?
* Optimal: Guaranteed to find the least cost path?
* Time complexity?
* Space complexity? 1 node
b nodes
2
» Cartoon of search tree: _ b nodes
— b is the branching factor mtiers
— m is the maximum depth
— solutions at various depths
b" nodes
* Number of nodes in entire tree?
T3 Ohls ~ 1+b+b2+....bm=O(b™)
1 Lo | 4 |
5 7]/6]5
27 31
-
Depth-First Search (DFS) Properties Comments on Depth-First Search
* What nodes DFS expand? Advantages
Some left prefix of the tree. 1 node — DFS requires less memory since only the nodes on the current path are stored.
~ Could process the whole tree! b nodes — By chance, DFS may find a solution without examining much of the search
* How much time does the fringe take? . tall
~ Ifmis finite, takes time O(b™), b nodes Space at all.
— m=maximum depth m tiers — if solutions are dense, may be much faster than breadth-first
* How much space does the fringe take?
— Only has siblings on path to root, so O(bm)
« Isit complete? Drawback
— No: fails in infinite-depth spaces b nodes — The major drawback of DFS is the determination of the depth until which the
— Can modify to avoid repeated states along path search has to proceed. This depth is called cut-off depth. The value of cut-off
— m could be infinite, so only if we prevent cycles (more later) depth is essential because otherwise the search will go on and on.
s Opmfml?) — If cut-off depth is small, solution may not found and if cut-off depth is large,
— No, it finds the “leftmost” solution, regardless of depth or cost t ~ lexit i1l be mor
— It may find a non-optimal goal first lme-complexity w ¢ more.

3. Breadth First Search

Algorithm:

1. [Initialize] Initially the OPEN List contains the
Start Node s. CLOSED List is Empty.

2. [Select] Select the first Node n on the OPEN List.
If OPEN is empty, Terminate

3. [Goal Test] If n is Goal, then decide on
Termination or Continuation / Cost Updation

4. [Expand]
a) Generate the successorsn_1,n_2,n_k, of
node n, based on the State Transformation Rules
b) Put n in LIST CLOSED

¢) For each n_i, not already in OPEN or CLOSED
List, put n_i in the END of OPEN List
d) For each n_i already in OPEN or CLOSE decide
based on cost of the paths

5. [Continue] Go to Step 2

Breadth-First Search

Strategy:
¢ expand a shallowest node first

Implementation:

» Fringe is a FIFO queue

Search

Tiers

Breadth-First Search (BFS) Properties

* What nodes does BFS expand?
— Processes all nodes above shallowest solution
— Let depth of shallowest solution be s b

s tiers
* How much time does the fringe take?

— 1+b+b?+b3+.. 405 + (b*7-b)) = O(b®)
* How much space does the fringe take?
— Has roughly the last tier, so O(b*) @)

» Is it complete? ®

— Yes it always reaches goal (if b is finite)
— s must be finite if a solution exists

» Is it optimal?
— Only if costs are all 1 (more on costs later)

1 node

b nodes

b? nodes

b* nodes

b nodes

Breadth First Search

nED
B
nen

BFS Tree for Water Jug problem

\(0,0) \ \(1,3)\ \(4,3)\ \(0,0) \

Comments on BFS

Advantages

» BFS will not get trapped exploring a blind alley.

 Ifthere is a solution, BFS is guaranteed to find it.

* If there are multiple solutions, then a minimal solution will be found.

Limitation

* Amount of time needed to generate all the nodes is considerable because of the
time complexity.

* Memory constraint is also a major hurdle because of the space-complexity.

* The searching process remembers all unwanted nodes which is of no practical
use for the search.

DFS vs BFS

* When will DFS outperform BFS?

* When will BFS outperform DFS?

Video of Demo Maze Water DFS/BFS

States light up first time explored. Which one?
1st- Breadth
2nd - Depth

More in Uninformed Search

Infinite depth Problem

To avoid the infinite depth problem of DFS, we can decide to only
search until depth L, i.e. we don’t expand beyond depth L.

- Depth-Limited Search

— What of solution is deeper than L? - Increase L iteratively.

- Iterative Deepening Search

As we shall see: this inherits the memory advantage of Depth-First
search.

[terative Deepening

* Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
— Run a DFS with depth limit 1. If no solution...
— Run a DFS with depth limit 2. If no solution...
— Run a DFS with depth limit 3.

* Isn’t that wastefully redundant?

[terative deepening search

— Generally most work happens in the lowest level
searched, so not so bad!

Number of nodes generated in a depth-limited search to depth d with branching
factor b:

Npps =00+ b1+ b2 + .. + b2 + b1 + pd

Number of nodes generated in an iterative deepening search to depth d with
branching factor b:

Nips = (d+1)b? + d b! + (d-1)b? + ... + 3b42 +2b%1 + 1bd =

o) = o(bTH)

Forb=10,d=235,
— Nprg=1+10+100 + 1,000 + 10,000 + 100,000 = 111,111 BFS
— Nips =6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
— NBFs= =1,111,100

Properties of iterative deepening search

Complete? Yes

Time? (d+1)b’ +d b + (d-1)b> + ... + b? = O(b?)
Space? O(bd)

Optimal? Yes, if step cost = 1 or increasing function of
depth.

Bidirectional Search

Idea
— simultaneously search forward from S and backwards from G
— stop when both “meet in the middle”
— need to keep track of the intersection of 2 open sets of nodes
What does searching backwards from G mean
— need a way to specify the predecessors of G
« this can be difficult,
* e.g., predecessors of checkmate in chess?
— what if there are multiple goal states?
— what if there is only a goal test, no explicit list?

Complexity: time and space complexity are: O(bd/z)

search frontier
at termination

Fig. 210 Bidi

irectional and unidirectional breadith-frs searches.

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

How?

Uniform Cost Search (UCS) / Dijkstra’s Algorithm

Uniform Cost Search (UCS)

Uniform Cost Search (UCS) Properties

Strategy:
* expand a cheapest node first:
Implementation:
* Fringe is a priority queue (priority: cumulative cost) 75
0
([e & e
3 9 1
@ =< I
®+ ©, @3 W17 1 @ 16
| [T s AN
Cast< @6 a @13@7 p q f
contours o | | PN
r a @8 « ¢ G
I EN !
e 1 @10 a
|
. a

What nodes does UCS expand?

— Processes all nodes with cost less than cheapest solution!

— If that solution costs C* and arcs cost at least &, then the
“effective depth” is roughly C*/&

— Takes time O(b¢"%) (exponential in effective depth)

C*¥/e “tiers”

How much space does the fringe take?
— Has roughly the last tier, so O(bC"?)

Is it complete?
— Assuming best solution has a finite cost and minimum arc cost
is positive, yes!
Is it optimal?
— Yes! (Proof next lecture via A*)

Uniform Cost [ssues

* Remember: UCS explores increasing cost
contours

* The good: UCS is complete and optimal!

* The bad:
— Explores options in every “direction”
— No information about goal location oul

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow water
DFS/BFS/UCS (L2D7)]

* We’ll fix that soon!

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water ---
DEFS, BFS, or UCS?

1.is BFS L2D7 B U D

2. is UCS : expansion slows down when you hit deep water

3. This is DFS

Summary of algorithms
Criterion Breadth- ~ Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time O(b™1 O(b[c*/f]) o(™) o o(b?)
Space oMYy OBy obm) Ol O(bd)
Optimal? Yes Yes No No Yes

The One Queue

 All these search algorithms are the
same except for fringe strategies

— Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

— Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

— Can even code one implementation that
takes a variable queuing object

PEEEFL T

Branch and Bound

Begin generating complete paths, keeping track of the shortest path
found so far.

Give up exploring any path as soon as its partial length becomes
greater than the shortest path found so far.

Using this algorithm, we are guaranteed to find the shortest path.
It still requires exponential time.

The time it saves depends on the order in which paths are explored.

Take-away

* Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

* Variety of uninformed search strategies
— Breadth-First Search: Queue is FIFO.
— Uniform-Cost Search: Queue explores cheapest descendant first.
— Depth-First Search: Queue picks deepest remaining. (Can be implemented differently.)
— Depth-Limited: DFS with a bound.
Iterative Deepening: Keep increasing the bound.
— Bidirectional Search: Run two searches, one backward from “the goal.”

« Iterative deepening search uses only linear space and not much more time than
other uninformed algorithms

Search and Models

» Search operates over models
of the world
— The agent doesn’t actually try

all the plans out in the real
world!

— Planning is all “in simulation”

— Your search is only as good as
your models...

Search Gone Wrong?

MAPRUESTE £ |\
T]._?.’_ \2 ¢ ICELAND.

Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes.

Next :

* Module 3: Search Strategies
— PART 3.1: Search
— PART 3.2: Uninformed Search
* Depth First Search
* Breadth First Search
* More in Uninformed Search
— PART 3.3: Informed/Heuristic Search
— PART 3.4: Beyond Classical Search
* Local Search
* Problem Reduction
— PART 3.5: Constraint Satisfaction Problems
— PART 3.6: Adversarial Search

References

Stuart Russell, Peter Norvig, Artificial intelligence : A Modern Approach, Prentice Hall

Artificial Intelligence by Elaine Rich & Kevin Knight, Third Ed, Tata McGraw Hill
Artificial Intelligence and Expert System by Patterson

(for more demos)
Artificial Intelligence and Expert System by Patterson
Slides adapted from CS188 Instructor: Anca Dragan, University of California, Berkeley
Slides adapted from CS60045 ARTIFICIAL INTELLIGENCE

%ﬁm

(some slides adapted from
http://aima.cs.berkeley.edu/)

