
Artificial Intelligence

Module 3: Search Strategies

PART 3.1: Search
PART 3.2: Uninformed Search

Dr. Chandra Prakash
Assistant Professor

Department of Computer Science and Engineering

(Slides adapted from StuartJ. Russell, B Ravindran, Mausam, Prof. Pallab Dasgupta, Prof. Partha Pratim Chakrabarti, Saikishor Jangiti

Module 3: Search Strategies

• PART 3.1: Search

• PART 3.2: Uninformed Search

– Depth First Search

– Breadth First Search

– More in Uninformed Search

• PART 3.3: Informed/Heuristic Search

• PART 3.4: Beyond Classical Search
– Local Search
– Problem Reduction

• PART 3.5: Constraint Satisfaction Problems

• PART 3.6: Adversarial Search

AUTOMATED PROBLEM SOLVING in AI

• Generalized Techniques for Solving Large Classes of Complex Problems
• Problem Statement is the Input and solution is the Output, sometimes even the problem specific

algorithm or method could be the Output
• Problem Formulation by AI Search Methods consists of the following key concepts

– Configuration or State

– Constraints or Definitions of Valid Configurations

– Rules for Change of State and their Outcomes

– Initial or Start Configurations

– Goal Satisfying Configurations

– An Implicit State or Configuration Space

– Valid Solutions from Start to Goal in the State Space

– General Algorithms which SEARCH for Solutions in this State Space

• ISSUES
– Size of the Implicit Space, Capturing Domain Knowledge, Intelligent Algorithms that work in reasonable time

and Memory, Handling Incompleteness and Uncertainty

BASICS OF STATE SPACE MODELLING

• STATE or CONFIGURATION:
– A set of variables which define a state or configuration

– Domains for every variable and constraints among variables to define a valid configuration

• STATE TRANSFORMATION RULES or MOVES:
– A set of RULES which define which are the valid set of NEXT STATE of a given State

– It also indicates who can make these Moves (OR Nodes, AND nodes, etc)

• STATE SPACE or IMPLICIT GRAPH
– The Complete Graph produced out of the State Transformation Rules.

– Typically too large to store. Could be Infinite.

• INITIAL or START STATE(s), GOAL STATE(s)
• SOLUTION(s), COSTS

– Depending on the problem formulation, it can be a PATH from Start to Goal or a Sub-graph of And-ed Nodes

• SEARCH ALGORITHMS
– Intelligently explore the Implicit Graph or State Space by examining only a small sub-set to find the solution

– To use Domain Knowledge or HEURISTICS to try and reach Goals faster

3 DISK, 3 PEG TOWER of HANOI STATE SPACE AND / OR STATE SPACES

CONSISTENT LABELLING BY CONSTRAINT

SATISFACTION

CONSISTENT LABELLING BY CONSTRAINT

SATISFACTION

STATES, SPACES, SOLUTIONS, SEARCH

• States
– Full / Perfect Information and Partial Information States

• State Transformation Rules
– Deterministic Outcomes

– Non-Deterministic / Probabilistic Outcomes

• State Spaces As Generalized Games
– Single Player: OR Graphs

– Multi-Player: And / Or, Adversarial, Probabilistic Graphs

• Solutions
– Paths

– Sub-graphs

– Expected Outcomes

• Costs
• Sizes
• Domain Knowledge
• Algorithms for Heuristic Search

MODELLING AND/OR GRAPHS:

• OR Nodes are ones for which one has a
choice.

• The AND nodes could be compositional
(sum, product, min, max, etc., depending
on the way the sub-problems are
composed),

Adversarial (game where the other parties
have a choice)

or

Probabilistic (Environmental Actions)

AND/OR GRAPHS: COMPOSITIONAL /
ADVERSARIAL / PROBABILISTIC

SEARCHING IMPLICIT GRAPHS

• Given the start state the SEARCH

Algorithm will create successors based

on the State Transformation Rules and

make part of the Graph EXPLICIT.

• It will EXPAND the Explicit graph

INTELLGENTLY to rapidly search for

a solution without exploring the entire

Implicit Graph or State Space

• For OR Graphs, the solution is a PATH

from start to Goal.

• Cost is usually sum of the edge costs on

the path, though it could be something

based on the problem

Measuring Search Algorithm Performance

• Completeness :

– Is the algorithm guaranteed to find a solution when there is one?

• Optimality :

– Does the algorithm find the optimal solution?

• Time Complexity :

– How long does it take to find the solution?

• Space Complexity :

– How much memory is needed to perform the search?

• Possibility to backtrack

• Informedness

• Time and space complexity
– Search in AI is represented by initial state, actions and transitions which usually result in infinite

Nodes and Edges in a graph.Hence, the complexity is rather measured by

• Branching Factor (b): Maximum number of successors of any node

• Depth (d) of the shallowest goal, i.e., number of steps from initial node

• Maximum length (m) of any path in state space (may be ∞)

Search

• Process of locating a solution to a problem by systematically looking
at nodes in a search tree or a search space until a goal node is found.

• a class of techniques for systematically finding or constructing
solutions to problems.

• Many (all?) AI problems can be formulated assearch problems!
• Examples:

– Path planning

– Games

– Natural Language Processing

– Machine learning

Type of Search Methods

Search Methods

Uninformed Search

Brute force

Breadth First Search (BFS)

Depth First Search (DFS)

Informed Search \
Heuristic Search

Greedy Search/ Best first search

A* Algo

AO* Algo
Exhaustive Search

Hill climbing

Steepest-Ascent Hill Climbing

Simulated Annealing

Local Search

Genetic Algorithm

Uninformed search strategies

• Uninformed: While searching you have no clue whether one non-goal state is
better than any other. Your search is blind.

• Also known as blind search

• Covered problems that considered the whole search space and produced a
sequence of actions leading to a goal.

• Various blind strategies:

– Brute force

– Depth-first search

– Breadth-first search

– Uniform-cost search

– Iterative deepening search

1. Brute Force /Generate-and-Test

• Try all possibilities

• Acceptable for simple problems.

– Eg : finding key of a 3 digit lock.

• Inefficient for problems with large space.

• Use DFS as all possible solution generated, before they can be tested.

Algorithm

1. Generate a possible solution.

2. Test to see if this is actually a

solution.

3. Quit if a solution has been found.

Else, return to step 1.

Generate-and-Test: 8-puzzle 2. Depth First Search (DFS)

Algorithm:
1. [Initialize] Initially the OPEN List contains the

Start Node s. CLOSED List is Empty.

2. [Select] Select the first Node n on the OPEN List.

If OPEN is empty, Terminate

3. [Goal Test] If n is Goal, then decide on

Termination or Continuation / Cost Updation

4. [Expand]

a) Generate the successors n_1, n_2, …. n_k, of

node n, based on the State Transformation Rules

b) Put n in LIST CLOSED

c) For each n_i, not already in OPEN or CLOSED

List, put n_i in the FRONT of OPEN List

d) For each n_i already in OPEN or CLOSED

decide based on cost of the paths

5. [Continue] Go to Step 2

Backtracking

• A variant of depth-first search
• In this search, we pursue a single branch of the tree until it

yields a solution or until a decision to terminate the path is
made.

• It makes sense to terminate a path if it reaches dead-end,
produces a previous state. In such a state backtracking
occurs

• Chronological Backtracking:
– Order in which steps are undone depends only on the temporal

sequence in which steps were initially made.
– Specifically most recent step is always the first to be undone.
– This is also simple backtracking.

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy:

• expand a deepest node first

Implementation:

• Fringe is a LIFO stack

Depth-First Search Recall : Search Algorithm Properties
• Complete: Guaranteed to find a solution if one exists?

• Optimal: Guaranteed to find the least cost path?

• Time complexity?

• Space complexity?

• Cartoon of search tree:
– b is the branching factor
– m is the maximum depth
– solutions at various depths

• Number of nodes in entire tree?
– 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

• What nodes DFS expand?
– Some left prefix of the tree.

– Could process the whole tree!

• How much time does the fringe take?

– If m is finite, takes time O(b
m

),

– m=maximum depth

• How much space does the fringe take?

– Only has siblings on path to root, so O(bm)

• Is it complete?

– No: fails in infinite-depth spaces

– Can modify to avoid repeated states along path

– m could be infinite, so only if we prevent cycles (more later)

• Is it optimal?

– No, it finds the “leftmost” solution, regardless of depth or cost

– It may find a non-optimal goal first

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Comments on Depth-First Search

Advantages
– DFS requires less memory since only the nodes on the current path are stored.

– By chance, DFS may find a solution without examining much of the search
space at all.

– if solutions are dense, may be much faster than breadth-first

Drawback
– The major drawback of DFS is the determination of the depth until which the

search has to proceed. This depth is called cut-off depth. The value of cut-off
depth is essential because otherwise the search will go on and on.

– If cut-off depth is small, solution may not found and if cut-off depth is large,
time-complexity will be more.

3. Breadth First Search

Algorithm:
1. [Initialize] Initially the OPEN List contains the

Start Node s. CLOSED List is Empty.

2. [Select] Select the first Node n on the OPEN List.

If OPEN is empty, Terminate

3. [Goal Test] If n is Goal, then decide on

Termination or Continuation / Cost Updation

4. [Expand]

a) Generate the successors n_1, n_2, …. n_k, of
node n, based on the State Transformation Rules
b) Put n in LIST CLOSED
c) For each n_i, not already in OPEN or CLOSED
List, put n_i in the END of OPEN List
d) For each n_i already in OPEN or CLOSE decide
based on cost of the paths

5. [Continue] Go to Step 2

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy:

• expand a shallowest node first

Implementation:

• Fringe is a FIFO queue

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest solution
– Let depth of shallowest solution be s

• How much time does the fringe take?

– 1+b+b2+b3+… +bs + (bs+1-b)) = O(bs)

• How much space does the fringe take?
– Has roughly the last tier, so O(bs)

• Is it complete?
– Yes it always reaches goal (if b is finite)
– s must be finite if a solution exists

• Is it optimal?
– Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth First Search

BFS Tree for Water Jug problem

(0,0)

(4,0) (0,3)

(4,3) (0,0) (1,3) (4,3) (0,0) (3,0)

Comments on BFS

Advantages
• BFS will not get trapped exploring a blind alley.

• If there is a solution, BFS is guaranteed to find it.

• If there are multiple solutions, then a minimal solution will be found.

Limitation
• Amount of time needed to generate all the nodes is considerable because of the

time complexity.

• Memory constraint is also a major hurdle because of the space-complexity.

• The searching process remembers all unwanted nodes which is of no practical
use for the search.

DFS vs BFS

• When will DFS outperform BFS?

• When will BFS outperform DFS?

Video of Demo Maze Water DFS/BFS

States light up first time explored. Which one?
1st- Breadth
2nd - Depth

More in Uninformed Search Infinite depth Problem

• To avoid the infinite depth problem of DFS, we can decide to only
search until depth L, i.e. we don’t expand beyond depth L.

• à Depth-Limited Search
– What of solution is deeper than L? à Increase L iteratively.

• à Iterative Deepening Search
• As we shall see: this inherits the memory advantage of Depth-First

search.

Iterative Deepening

• Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
– Run a DFS with depth limit 1. If no solution…

– Run a DFS with depth limit 2. If no solution…

– Run a DFS with depth limit 3. …..

• Isn’t that wastefully redundant?
– Generally most work happens in the lowest level

searched, so not so bad!

…
b

Iterative deepening search

• Number of nodes generated in a depth-limited search to depth d with branching
factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening search to depth d with
branching factor b:

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd =

• For b = 10, d = 5,
– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
– NBFS = .. = 1,111,100

1() ()d dO b O b +¹

BFS

Properties of iterative deepening search

• Complete? Yes
• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)
• Space? O(bd)
• Optimal? Yes, if step cost = 1 or increasing function of

depth.

Bidirectional Search

• Idea

– simultaneously search forward from S and backwards from G

– stop when both “meet in the middle”

– need to keep track of the intersection of 2 open sets of nodes

• What does searching backwards from G mean

– need a way to specify the predecessors of G

• this can be difficult,

• e.g., predecessors of checkmate in chess?

– what if there are multiple goal states?

– what if there is only a goal test, no explicit list?

Complexity: time and space complexity are: /2()dO b

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

How?

Uniform Cost Search (UCS) / Dijkstra’s Algorithm

Uniform Cost Search (UCS)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy:

• expand a cheapest node first:

Implementation:

• Fringe is a priority queue (priority: cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest solution!
– If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective depth)

• How much space does the fringe take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
c £ 3

c £ 2

c £ 1

Uniform Cost Issues

• Remember: UCS explores increasing cost
contours

• The good: UCS is complete and optimal!

• The bad:
– Explores options in every “direction”
– No information about goal location

• We’ll fix that soon!

Start Goal

…

c £ 3

c £ 2
c £ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow water
DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water ---
DFS, BFS, or UCS?

1. is BFS L2D7 B U D

2. is UCS : expansion slows down when you hit deep water

3. This is DFS

Summary of algorithms

The One Queue

• All these search algorithms are the
same except for fringe strategies
– Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)

– Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

– Can even code one implementation that
takes a variable queuing object

Branch and Bound

• Begin generating complete paths, keeping track of the shortest path
found so far.

• Give up exploring any path as soon as its partial length becomes
greater than the shortest path found so far.

• Using this algorithm, we are guaranteed to find the shortest path.
• It still requires exponential time.
• The time it saves depends on the order in which paths are explored.

Take-away

• Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

• Variety of uninformed search strategies
– Breadth-First Search: Queue is FIFO.
– Uniform-Cost Search: Queue explores cheapest descendant first.
– Depth-First Search: Queue picks deepest remaining. (Can be implemented differently.)
– Depth-Limited: DFS with a bound.
– Iterative Deepening: Keep increasing the bound.
– Bidirectional Search: Run two searches, one backward from “the goal.”

• Iterative deepening search uses only linear space and not much more time than
other uninformed algorithms

Search and Models

• Search operates over models
of the world
– The agent doesn’t actually try

all the plans out in the real
world!

– Planning is all “in simulation”

– Your search is only as good as
your models…

Search Gone Wrong? Next :

• Module 3: Search Strategies
– PART 3.1: Search

– PART 3.2: Uninformed Search

• Depth First Search

• Breadth First Search

• More in Uninformed Search

– PART 3.3: Informed/Heuristic Search

– PART 3.4: Beyond Classical Search

• Local Search

• Problem Reduction

– PART 3.5: Constraint Satisfaction Problems

– PART 3.6: Adversarial Search

References

• Stuart Russell, Peter Norvig, Artificial intelligence : A Modern Approach, Prentice Hall

• Artificial Intelligence by Elaine Rich & Kevin Knight, Third Ed, Tata McGraw Hill

• Artificial Intelligence and Expert System by Patterson

• http://www.cs.rmit.edu.au/AI-Search/Product/

• http://aima.cs.berkeley.edu/demos.html (for more demos)

• Artificial Intelligence and Expert System by Patterson

• Slides adapted from CS188 Instructor: Anca Dragan, University of California, Berkeley

• Slides adapted from CS60045 ARTIFICIAL INTELLIGENCE

(some slides adapted from
http://aima.cs.berkeley.edu/)

