Sardar Vallabhbhai National Institute of Technology
CS 210 : ARTIFICIAL INTELLIGENCE

LAB 4-5: Uninformed and Informed Search Techniques

INSTRUCTION:

1. Please save your lab.doc as LAB No_Roll No.doc.

2. Use/paste the snapshot of the steps followed along with result/s.

3. Mention your observation/comment after results in the doc.

4. Any violation from the Academic honesty /course policies, will results in the strongest consequences
available to us.

PART A : Introductory Problem [25 Marks]|
Maze Problem [15 Marks]

1. Consider a maze comprising of square blocks in which intelligent agent can move either vertically or
horizontally. Diagonal movement is not allowed. Cost of each move is 1.

Red block: initial position, Blue block: goal position and Grey block: obstacle

Apply following Blind/Uninformed and Informed algorithms :

(a) dfs: Depth first search

(b) bfs: Breadth first search

(c) dls: Depth limited search, use 3 as default depth

(d) ucs: Uniform cost Search

(e) gbfs: Greedy Best First Search

(f) astar: A* Algorithm

Inputs:

Write a python program that takes input number of square blocks as input (i.e. 6 x 6) in first line.
Second line contains the initial position of intelligent agent which is (1,1) and the goal square block
which is (6,6) in above example. Third line contains the coordinates of the obstacles. Fourth line
contains the search strategy.

eg. input file: input.txt

6,6

1-1

1,1:6,6
2,1;2,5;3,2;3,3;3,5;4,5;4,6:5,2;5,3;6,3
dfs

python TA 4 5 P2 maze world.py “inputs.txtjoutputs.txt)
Outputs: Sequence of blocks that are explored (each on separate line) as per search algorithm so as to
reach goal position. Last line should contain the total search cost.
. Maze problem with multi-goal [10 Marks]

Consider the maze given in the figure below. The walled tiles are marked in black and your agent A cannot
move to or through those positions.

Starting Position

®
N
Oll Il IS

®

Inputs:

Write python/C program that takes the maze as a 5x5 matrix input where 0 denotes an empty tile, 1
denotes an obstruction/wall, 2 denotes the start state and 3 denotes the reward. Assume valid actions as
L,R,U,D,S,N where L=move_left, R=move right, U=move up, D=move down.

Use the A* algorithms as (astar) on the resultant maze for your agent to reach all the rewards, and keep
a record of the tiles visited on the way.

Hints:

a) Your program should create the appropriate data structure that can capture problem states, as men-
tioned in the problem.
b) Once the goal is reached (i.e. Reward position), program should terminate.

Outputs: The output should have the sequence of the tiles visited by each algorithm to reach the termination
state stored in an output file labeled as "out astar.txt" and so on. Print the number of steps required to
reach the goal.

PART B : Exploratory Problem [25 Marks]|

3. Search in Pac-Man This problem allow you to visualize the results of the techniques you implement.
Pac-Man provides a challenging problem environment that demands creative solutions of a real-world
AT problems. The Pacman agent needs to find paths through the maze world, both to reach a location
and to collect food efficiently. In this Problem, you are expected to implement and experiment with
different AT search techniques that was discussed in the class in a Pacman environment.

This lab assignment is inspired by Project 1: Search, which is a part of a recent offering of CS188 at
UC Berkeley[1]. We thank the authors at Berkeley for making their project available to the public.

Aim: Students implement depth-first, breadth-first, uniform cost, and A* search algorithms. These
algorithms are used to solve navigation and traveling salesman problems in the Pacman world.

The code for this assignment is provided to you as LA 4 5 search zip folder. You can download

all the code and supporting files as a Folder/ zip archive from the shared link. The code for this
project consists of several Python files, some of which you will need to read and understand in order
to complete the assignment, and some of which you can ignore.

Assumption : The projects for this class assume you use Python 3.6.
Files you’ll edit:
search.py : Where all of your search algorithms will reside.

searchAgents.py : Where all of your search-based agents will reside.

Files you might want to look at:

pacman.py The main file that runs Pacman games. This file describes a Pacman GameState
type, which you use in this project.

game.py The logic behind how the Pacman world works. This file describes several
supporting types like AgentState, Agent, Direction, and Grid.

util.py Useful data structures for implementing search algorithms.

Supporting files you can ignore:

graphicsDisplay.py Graphics for Pacman
graphicsUtils.py Support for Pacman graphics
textDisplay.py ASCII graphics for Pacman

ghostAgents.py Agents to control ghosts

keyboardAgents.py Keyboard interfaces to control Pacman

layout.py Code for reading layout files and storing their contents
autograder.py Project autograder

testParser.py Parses autograder test and solution files
testClasses.py General autograding test classes

test_cases/ Directory containing the test cases for each question
searchTestClasses.py Project 1 specific autograding test classes

Files to Edit and Submit: You will fill in portions of search.py and searchAgents.py during
the assignment. Once you have completed the assignment, you will submit a token generated by
submission_autograder.py. Please do not change the other files in this distribution or submit any
of our original files other than these files.

‘Welcome to Pacman

TASK 0: Understanding the Working of Pacman Game (Ungraded)

After downloading the code from the shared link, unzipping it, and changing to the directory, you
should be able to :

TASK 0: Play the game of Pacman by typing the following at the command line:
python pacman.py

Pacman lives in a shiny blue world of twisting corridors and tasty round treats. Navigating this world
efficiently will be Pacman’s first step in mastering his domain.

The simplest agent in searchAgents.py is called the GoWestAgent, which always goes West (a trivial
reflex agent). This agent can occasionally win:

python pacman.py --layout testMaze --pacman GoWestAgent
But, things get ugly for this agent when turning is required:
python pacman.py --layout tinyMaze --pacman GoWestAgent

If Pacman gets stuck, you can exit the game by typing CTRL-c into your terminal.
Soon, your agent will solve not only tinyMaze, but any maze you want.

Note that pacman.py supports a number of options that can each be expressed in a long way (e.g.,
--layout) or a short way (e.g., -1). You can see the list of all options and their default values via:

python pacman.py -h

Also, all of the commands that appear in this project also appear in commands . txt, for easy copying and
pasting. In UNIX/Mac OS X, you can even run all these commands in order with bash commands.txt.

Question 4.1 (3 points) : Finding a Fixed Food Dot using Depth First
Search

In searchAgents.py, you’ll find a fully implemented SearchAgent, which plans out a path through
Pacman’s world and then executes that path step-by-step. The search algorithms for formulating a
plan are not implemented — that’s your job.

First, test that the SearchAgent is working correctly by running:
python pacman.py -1 tinyMaze -p SearchAgent -a fn=tinyMazeSearch

The command above tells the SearchAgent to use tinyMazeSearch as its search algorithm, which is
implemented in search.py. Pacman should navigate the maze successfully.

Now it’s time to write full-fledged generic search functions to help Pacman plan routes! Pseudocode
for the search algorithms you’ll write can be found in the lecture slides. Remember that a search node
must contain not only a state but also the information necessary to reconstruct the path (plan) which
gets to that state.

Important note: All of your search functions need to return a list of actions that will lead the agent
from the start to the goal. These actions all have to be legal moves (valid directions, no moving through
walls).

Important note: Make sure to use the Stack, Queue and PriorityQueue data structures provided to
you in util.py! These data structure implementations have particular properties which are required
for compatibility with the autograder.

Hint: Each algorithm is very similar. Algorithms for DFS, BFS, UCS, and A* differ only in the details
of how the fringe is managed. So, concentrate on getting DFS right and the rest should be relatively
straightforward. Indeed, one possible implementation requires only a single generic search method
which is configured with an algorithm-specific queuing strategy. (Your implementation need not be of
this form to receive full credit).

Implement the depth-first search (DFS) algorithm in the depthFirstSearch function in search.py.
To make your algorithm complete, write the graph search version of DFS, which avoids expanding any
already visited states.

Your code should quickly find a solution for:

python pacman.py -1 tinyMaze -p SearchAgent
python pacman.py -1 mediumMaze -p SearchAgent
python pacman.py -1 bigMaze -z .5 -p SearchAgent

The Pacman board will show an overlay of the states explored, and the order in which they were
explored (brighter red means earlier exploration). Is the exploration order what you would have
expected? Does Pacman actually go to all the explored squares on his way to the goal?

Hint: If you use a Stack as your data structure, the solution found by your DFS algorithm for
mediumMaze should have a length of 130 (provided you push successors onto the fringe in the order
provided by getSuccessors; you might get 246 if you push them in the reverse order). Is this a least
cost solution? If not, think about what depth-first search is doing wrong.

Question 4.2 (3 points): Breadth First Search

Implement the breadth-first search (BFS) algorithm in the breadthFirstSearch function in search.py.
Again, write a graph search algorithm that avoids expanding any already visited states. Test your code
the same way you did for depth-first search.

python pacman.py -1 mediumMaze -p SearchAgent -a fn=bfs

python pacman.py -1 bigMaze -p SearchAgent -a fn=bfs -z .5

Does BFS find a least cost solution? If not, check your implementation.
Hint: If Pacman moves too slowly for you, try the option --frameTime O.

Note: If you’ve written your search code generically, your code should work equally well for the eight-
puzzle search problem without any changes.

python eightpuzzle.py

Question 4.3 (3 points): Varying the Cost Function

While BFS will find a fewest-actions path to the goal, we might want to find paths that are “best” in
other senses. Consider mediumDottedMaze and mediumScaryMaze.

By changing the cost function, we can encourage Pacman to find different paths. For example, we can
charge more for dangerous steps in ghost-ridden areas or less for steps in food-rich areas, and a rational
Pacman agent should adjust its behavior in response.

Implement the uniform-cost graph search algorithm in the uniformCostSearch function in search.py.
We encourage you to look through util.py for some data structures that may be useful in your
implementation. You should now observe successful behavior in all three of the following layouts,
where the agents below are all UCS agents that differ only in the cost function they use (the agents
and cost functions are written for you):

python pacman.py -1 mediumMaze -p SearchAgent -a fn=ucs
python pacman.py -1 mediumDottedMaze -p StayEastSearchAgent
python pacman.py -1 mediumScaryMaze -p StayWestSearchAgent

Note: You should get very low and very high path costs for the StayEastSearchAgent and StayWestSearchAgent
respectively, due to their exponential cost functions (see searchAgents.py for details).

Question 4.4 (3 points): A* search

Implement A* graph search in the empty function aStarSearch in search.py. A* takes a heuristic
function as an argument. Heuristics take two arguments: a state in the search problem (the main
argument), and the problem itself (for reference information). The nullHeuristic heuristic function
in search.py is a trivial example.

You can test your A* implementation on the original problem of finding a path through a maze to a
fixed position using the Manhattan distance heuristic (implemented already as manhattanHeuristic
in searchAgents.py).

python pacman.py -1 bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic

You should see that A* finds the optimal solution slightly faster than uniform cost search (about 549
vs. 620 search nodes expanded in our implementation, but ties in priority may make your numbers
differ slightly). What happens on openMaze for the various search strategies?

Question 4.5 (3 points): Finding All the Corners

The real power of A* will only be apparent with a more challenging search problem. Now, it’s time to
formulate a new problem and design a heuristic for it.

In corner mazes, there are four dots, one in each corner. Our new search problem is to find the shortest
path through the maze that touches all four corners (whether the maze actually has food there or not).
Note that for some mazes like tinyCorners, the shortest path does not always go to the closest food
first! Hint: the shortest path through tinyCorners takes 28 steps.

Note: Make sure to complete Question 2 before working on Question 5, because Question 5 builds
upon your answer for Question 2.

Implement the CornersProblem search problem in searchAgents.py. You will need to choose a state
representation that encodes all the information necessary to detect whether all four corners have been
reached. Now, your search agent should solve:

python pacman.py -1 tinyCorners -p SearchAgent -a fn=bfs,prob=CornersProblem
python pacman.py -1 mediumCorners -p SearchAgent -a fn=bfs,prob=CornersProblem

To receive full credit, you need to define an abstract state representation that does not encode irrelevant
information (like the position of ghosts, where extra food is, etc.). In particular, do not use a Pacman
GameState as a search state. Your code will be very, very slow if you do (and also wrong).

Hint: The only parts of the game state you need to reference in your implementation are the starting
Pacman position and the location of the four corners.

Our implementation of breadthFirstSearch expands just under 2000 search nodes on mediumCorners.
However, heuristics (used with A* search) can reduce the amount of searching required.

Question 4.6 (3 points): Corners Problem: Heuristic

Note: Make sure to complete Question 4 before working on Question 6, because Question 6 builds
upon your answer for Question 4.

Implement a non-trivial, consistent heuristic for the CornersProblem in cornersHeuristic.
python pacman.py -1 mediumCorners -p AStarCornersAgent -z 0.5
Note: AStarCornersAgent is a shortcut for

-p SearchAgent -a fn=aStarSearch,prob=CornersProblem,heuristic=cornersHeuristic

Admissibility vs. Consistency: Remember, heuristics are just functions that take search states
and return numbers that estimate the cost to a nearest goal. More effective heuristics will return values
closer to the actual goal costs. To be admissible, the heuristic values must be lower bounds on the
actual shortest path cost to the nearest goal (and non-negative). To be consistent, it must additionally
hold that if an action has cost ¢, then taking that action can only cause a drop in heuristic of at most
c.

Remember that admissibility isn’t enough to guarantee correctness in graph search — you need the
stronger condition of consistency. However, admissible heuristics are usually also consistent, especially
if they are derived from problem relaxations. Therefore it is usually easiest to start out by brainstorming
admissible heuristics. Once you have an admissible heuristic that works well, you can check whether it is
indeed consistent, too. The only way to guarantee consistency is with a proof. However, inconsistency
can often be detected by verifying that for each node you expand, its successor nodes are equal or
higher in in f-value. Moreover, if UCS and A* ever return paths of different lengths, your heuristic is
inconsistent. This stuff is tricky!

Non-Trivial Heuristics: The trivial heuristics are the ones that return zero everywhere (UCS) and
the heuristic which computes the true completion cost. The former won’t save you any time, while the
latter will timeout the autograder. You want a heuristic which reduces total compute time, though
for this assignment the autograder will only check node counts (aside from enforcing a reasonable time
limit).

Grading: Your heuristic must be a non-trivial non-negative consistent heuristic to receive any points.
Make sure that your heuristic returns 0 at every goal state and never returns a negative value. De-
pending on how few nodes your heuristic expands, you’ll be graded:

Number of nodes expanded | Grade
More than 2000 0/3
At most 2000 1/3
At most 1600 2/3
At most 1200 3/3

Remember: If your heuristic is inconsistent, you will receive no credit, so be careful!

Question 4.7 (4 points): Eating All The Dots

Now we’ll solve a hard search problem: eating all the Pacman food in as few steps as possible.
For this, we’ll need a new search problem definition which formalizes the food-clearing problem:
FoodSearchProblem in searchAgents.py (implemented for you). A solution is defined to be a path
that collects all of the food in the Pacman world. For the present project, solutions do not take into
account any ghosts or power pellets; solutions only depend on the placement of walls, regular food
and Pacman. (Of course ghosts can ruin the execution of a solution! We’ll get to that in the next
project.) If you have written your general search methods correctly, A* with a null heuristic (equivalent
to uniform-cost search) should quickly find an optimal solution to testSearch with no code change on
your part (total cost of 7).

python pacman.py -1 testSearch -p AStarFoodSearchAgent

Note: AStarFoodSearchAgent is a shortcut for

-p SearchAgent -a fn=astar,prob=FoodSearchProblem,heuristic=foodHeuristic

You should find that UCS starts to slow down even for the seemingly simple tinySearch. As a

reference, our implementation takes 2.5 seconds to find a path of length 27 after expanding 5057 search
nodes.

Note: Make sure to complete Question 4 before working on Question 7, because Question 7 builds upon
your answer for Question 4.

Fill in foodHeuristic in searchAgents.py with a consistent heuristic for the FoodSearchProblem.
Try your agent on the trickySearch board:

python pacman.py -1 trickySearch -p AStarFoodSearchAgent

Our UCS agent finds the optimal solution in about 13 seconds, exploring over 16,000 nodes.

Any non-trivial non-negative consistent heuristic will receive 1 point. Make sure that your heuristic
returns 0 at every goal state and never returns a negative value. Depending on how few nodes your
heuristic expands, you’ll get additional points:

Number of nodes expanded | Grade

More than 15000 1/4

At most 15000 2/4

At most 12000 3/4

At most 9000 4/4 (full credit; medium)

At most 7000 5/4 (optional extra credit; hard)

Remember: If your heuristic is inconsistent, you will receive no credit, so be careful!l Can you solve
mediumSearch in a short time? If so, we’re either very, very impressed, or your heuristic is inconsistent.

Question 4.8 (3 points): Suboptimal Search

Sometimes, even with A* and a good heuristic, finding the optimal path through all the dots is hard.
In these cases, we'd still like to find a reasonably good path, quickly. In this section, you’ll write an
agent that always greedily eats the closest dot. ClosestDotSearchAgent is implemented for you in
searchAgents.py, but it’s missing a key function that finds a path to the closest dot.

Implement the function findPathToClosestDot in searchAgents.py. Our agent solves this maze
(suboptimally!) in under a second with a path cost of 350:

python pacman.py -1 bigSearch -p ClosestDotSearchAgent -z .5

Hint: The quickest way to complete findPathToClosestDot is to fill in the AnyFoodSearchProblem,
which is missing its goal test. Then, solve that problem with an appropriate search function. The
solution should be very short!

Your ClosestDotSearchAgent won’t always find the shortest possible path through the maze. Make
sure you understand why and try to come up with a small example where repeatedly going to the
closest dot does not result in finding the shortest path for eating all the dots.

Submission and Evaluation:

This assignment includes an autograder for you to grade your answers on your machine. This can be
run with the command:

python autograder.py

You need to run it and submit the generated output as snapshot in your final doc/PDF
before observation/comment section on MS Team.

Include a neatly formatted pdf document (format already shared) that describes your heuristics, and
other observations/explanations while implementing the lab in the document.

It is expected that you complete this assignment by yourself. You may not consult with your classmates
or anybody else about their solutions. You are also not to look at solutions to this assignment or
related ones on the Internet. You are allowed to use resources on the Internet for programming (say to
understand a particular command or a data structure), and also to understand concepts. However, you
must list every resource you have consulted or used at the end of document under references section,
explaining exactly how the resource was used. Failure to list all your sources will be considered an
academic violation.

Place all files in which you have written code in or modified in a directory named TA 4 5-rollno,
where rollno is your roll number. Tar and Gzip the directory to produce a single compressed file (say
TA 4 5 -rollno.tar.gz). Submit this compressed file on MS Team, under Lab Assignment 4-5.

Evaluation: Your code will be autograded for technical correctness. Please do not change the names
of any provided functions or classes within the code, or you will wreak havoc on the autograder.
However, the correctness of your implementation — not the autograder’s judgements — will be the final
judge of your score. If necessary, we will review and grade assignments individually to ensure that you
receive due credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in the class for
logical redundancy. If you copy someone else’s code and submit it with minor changes, we will know.
These cheat detectors are quite hard to fool, so please don’t try. We trust you all to submit your own
work only; please don’t let us down. If you do, we will pursue the strongest consequences available to us.

Reference [1] http://ai.berkeley.edu/project overview.html

