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Module 3:  Search Strategies

• PART 3.1: Search 
• PART 3.2: Uninformed Search
• PART 3.3: Informed/Heuristic Search 
• PART 3.4: Beyond Classical Search 

– Local Search 
• Generate-and-test
• Hill climbing
• Simulated Analing 

– Problem reduction
• PART 3.5: Adversarial Search
• PART 3.6: Constraint Satisfaction Problems

Games you play ?? 

• Identify it is : 

– Single/ Multi-Player 
– Cooperative vs. competitive 
– Deterministic and non-

deterministic
– Probabilistic 

Play/Search with Other Agents

(Credits: Samiran Roy. Graphic source: https://github.com/samiranrl/Carrom_rl)



PRISONER’S DILEMMA OVERVIEW OF GAMES

• Games are a form of multi-agent environment 

– What do other agents do and how do they affect our success? 

• Cooperative vs. competitive multi-agent environments .

– Competitive multi-agent environments give rise to adversarial 
search.

– Adversarial Search Problem also know as GAMES

• Specifics:
– Sequences of player’s decisions we control

– Decisions of other player(s) we do not control

• Opponent’s behavior introduces uncertainty
• Contingency problem:  many possible opponent’s moves must be 

“covered” by the solution

• Rational opponent – maximizes its own utility (payoff) function6

Game Playing

• Why do AI researchers study game playing?
– Well defined rules 
– Easy to evaluate 
– It’s a good reasoning problem, formal and nontrivial.
– Direct comparison with humans and other computer programs is easy.

• Adversarial search in Game playing :
– Examine the problems that arise when we try to plan ahead in a world where other agents are

planning against us

• What Kinds of Games?
– Mainly games of strategy with the following characteristics:

• Sequence of moves to play
• Rules that specify possible moves
• Rules that specify a payment for each move
• Objective is to maximize your payment

Search Vs. Games Problems

Search Problems GAME Problems 
Specifying a move for every possible      

opponent reply
Unpredictable opponent 

Unlikely to find goal, must approximate Time limits 

no adversary adversary

Solution is (heuristic) method for finding 
goal

Solution is strategy (strategy specifies move for 
every possible opponent reply).

Heuristic techniques can find optimal
solution

Optimality depends on opponent. Why?
Time limits force an approximate solution

Evaluation function: estimate of cost from 
start to goal through given node

Evaluation function: evaluate “goodness” of  
game position

Examples: 
path planning, scheduling activities

Examples: 
chess, checkers, Othello, backgammon 



Video of Demo Mystery Pac-man Types of Games

• Many different kinds of games!

• Axes:

– Deterministic or stochastic?

– One, two, or more players?

– Zero sum?

– Perfect information (can you see the state)?

• Want algorithms for calculating a strategy (policy) which 

recommends a move from each state

Types of Games

• Zero-Sum Games
– Agents have opposite utilities (values on outcomes)

– Lets us think of a single value that one maximizes and 
the other minimizes

– Adversarial, pure competition

– Zero-sum describes a situation in which a 
participant’s  gain or loss is exactly balanced by the 
losses or gains of the other participant(s). 

– If the total gains of the participants are added up,  and 
the total losses are subtracted,  they will sum to zero.

• General Games
– Agents have independent utilities (values on 

outcomes)

– Cooperation, indifference, competition, and more 
are all possible

• We don’t make AI to act in isolation, it should       a) work 
around people and b) help people

• That means that every AI agent needs to solve a game

• Common payoff games
– Discussion: Use a technique you’ve learned so far to solve 

one! 

Zero-Sum Game  

• Checkers: 1950: First computer player.  1994: First 
computer champion: Chinook ended 40-year-reign 
of human champion Marion Tinsley using complete 
8-piece endgame. 2007: Checkers solved!

• Chess: 1997: Deep Blue defeats human champion 
Gary Kasparov in a six-game match.  Deep Blue 
examined 200M positions per second, used very 
sophisticated evaluation and undisclosed methods 
for extending some lines of search up to 40 ply.  
Current programs are even better, if less historic.

• Go :2016: Alpha GO defeats human champion. 
Uses Monte Carlo Tree Search, learned 
evaluation function.

• Pacman



Typical AI assumptions

• Two agents whose actions alternate

• Utility values for each agent are the opposite of
the other
– creates the adversarial situation

• Fully observable environments

• In game theory terms:
– Zero-sum games of perfect information.

Deterministic Games with Terminal Utilities

• Many possible formalizations, one is:
– States: 

• S (start at s0)
– Players: 

• P={1...N} (usually take turns)
– Actions: 

• A (may depend on player / state)
– Transition Function: 

• SxA ® S
– Terminal Test: 

• S ® {t,f}
– Terminal Utilities: 

• SxP ® R

• Solution for a player is a policy: S ® A

Adversarial Games

We try to plan ahead in a world where other agents are planning against us

Rational opponent:
• maximizes its own utility (payoff) function

Games as Adversarial Search

• States:

– board configurations
• Initial state:

– the board position and which player will move

• Successor function:

– returns list of (move, state) pairs, each indicating a legal move and the resulting state
• Terminal test:

– determines when the game is over

• Utility function:

– gives a numeric value in terminal states
– (e.g., -1, 0, +1 for loss, tie, win)



More on Search

• Cost -> Utility

– no longer minimizing cost! 
– agent now wants to maximize its score/utility! 

• Search Tree 

• Size of search trees
– b = branching factor
– d = number of moves by both players
– Search tree is O(bd)
– Chess

• b ~ 35
• D ~100

- search tree is ~ 10 154 (!!)

Game Trees

• A tree with three types of nodes, 
– Terminal nodes :

• Terminal nodes have no children. 
– Min nodes and Max nodes. 
– The tree has alternating levels of Max and Min nodes, representing the turns of Player-1 and Player-2 in making 

moves

• All nodes represent some state of the game
• Terminal nodes are labeled with the payoff for Player-1. 

– It could be Boolean (such as WON or LOST). 
– In large games, where looking ahead up to the WON / LOST states is not feasible, the payoff at a terminal node may 

represent a heuristic cost representing the quality of the state of the game from Player-1’s perspective

• The payoff at a Min node is the minimum among the payoffs of its successors
• The payoff at a Max node is the maximum among the payoffs of its successors
• If Player-1 aims to maximize its payoff, then it represents Max nodes, else it represents Min nodes.

Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state: 
The best achievable 
outcome (utility) 
from that stateV



Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

EXAMPLE OF AN ADVERSARIAL 

2 PERSON GAME: TIC-TAC-TOE

A two player game where minmax
algorithm is applies is Tic–Tac-Toe.

In this game in order to win
• must fill a row, a column or

diagonal (X or O).

Generate a Game tree

Tic-Tac-Toe Game Tree

leaf nodes
are evaluated

The Blue/ computer is Max. 
• maximize outcome

The opponent is Min. : 
• maximize outcome

At the leaf nodes, the utility function is employed. 
Big value means good, small is bad.

Game tree (2-player, deterministic, turns)



Adversarial Search (Minimax)

• Deterministic, zero-sum games:

– Tic-tac-toe, chess, checkers

– One player maximizes result

– The other minimizes result

• Minimax search:

– A state-space search tree

– Players alternate turns

– Compute each node’s minimax value: 
the best achievable utility against a 
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game 

Minimax values:
computed recursively

Mini-Max Terminology

• move: a move by both players

• ply: a half-move

• utility function: the function applied to leaf nodes

• backed-up value

– of a max-position: the value of its largest successor
– of a min-position: the value of its smallest successor

• minimax procedure: search down several levels; at the bottom level 

apply the utility function, back-up values all the way up to the root 

node, and that node selects the move.

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

• Perfect play for deterministic games

• Idea: choose move to position with highest minimax value
= best achievable payoff against best play

• E.g., 2-ply game:

12 8 5 23 2 144 6

3 2 2

3



Pseudocode for Minimax Algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game
v¬MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ¬ ∞
for a,s in SUCCESSORS(state) do

v ¬ MIN(v,MAX-VALUE(s))
return v

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ¬ -∞
for a,s in SUCCESSORS(state) do

v ¬ MAX(v,MIN-VALUE(s))
return v

Minimax algorithm Adversarial 
analogue of DFS

Exercise 

Solution Minimax Strategy

• Why do we take the min value every other level of the tree?

• These nodes represent the opponent’s choice of move.

• The computer assumes that the human will choose that move that is 

of least value to the computer.



Minimax Properties

Optimal against a perfect player.  Otherwise?

10 10 9 100

max

min

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp) Example of Algorithm Execution

MAX to move



Aspects of Multiplayer Games

• Upto previous slides assumes that each player operates to maximize only their
own utility

• In practice, players make alliances
– E.g, C strong, A and B both weak
– May be best for A and B to attack C rather than each other

• If game is not zero-sum (i.e., utility(A) = - utility(B) then alliances can be useful
even with 2 players
– e.g., both cooperate to maximum the sum of the utilities

Multiplayer games

• Games allow more than two players

• Single minimax values become vectors

PROPERTIES OF MINIMAX

Complete depth-first exploration of the game tree
– Complete?

• Yes (if tree is finite)

– Optimal?
• Yes (against an optimal opponent)

• No (does not exploit opponent weakness against suboptimal opponent)

– Time complexity?

• O(bm) Max depth = m, b legal moves at each point

– Space complexity?

• O(bm)
• (depth-first exploration, for algorithm that generates all successors at once or O(m) for an

algorithm that generates succesors one at a time )

Efficent similar to (exhaustive) DFS

PROPERTIES OF MINIMAX

• Minimax advantages:
– Returns an optimal action, assuming perfect opponent play.
– Minimax is the simplest possible (reasonable) game search algorithm.

• Minimax disadvantages:
– It's completely infeasible in practice.

• When the search tree is too large, we need to limit the search depth and
apply an evaluation function to the cut-off states.



Good Enough?

• Chess:

– branching factor b≈35
– game length m≈100
– search space bm ≈ 35100 ≈ 10154

• The Universe:

– number of atoms ≈ 1078

– age ≈ 1018 seconds
– 108 moves/sec x 1078 x 1018 = 10104

• Exact solution completely infeasible

– for "reasonable“ games exact solution completely infeasible

Many nodes are useless : There are some nodes where we don’t need to know 
exact score because we will never take path in the future

Solution to the complexity problem

43

Resource Limits

Game Tree Pruning

Minimax Example

12 8 5 23 2 14

3 <=2 2

3



Is there a good Min-Max ?

• Yes ! 

• We just need to prune branches that are not required in searching

• Idea:

– Start propagating scores as soon as leaf nodes are generated
– Do not explore nodes which cannot affect the choice of move

• The method for pruning the search tree generated by minimax is 

called Alpha-Beta

Alpha-Beta Pruning

• General configuration (MIN version)
– We’re computing the MIN-VALUE at some node n
– We’re looping over n’s children
– n’s estimate of the childrens’ min is dropping
– Who cares about n’s value?  MAX
– Let a be the best value that MAX can get at any choice 

point along the current path from the root
– If n becomes worse than a, MAX will avoid it, so we can 

stop considering n’s other children (it’s already bad 
enough that it won’t be played)

• MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Alpha (α) Beta (β) values

• Computing alpha-beta values
– α value is a lower-bound on the actual value of a Max node, maximum across seen children
– β value is an upper-bound on actual value of a Min node, minimum across seen children

• Propagation
– Update α ,β values by propagating upwards values of terminal nodes
– Update α ,β values down to allow pruning

• Two key points:

• α value can never decrease

• β value can never increase

• Search can be discontinued at a node if:
o It is a Max node and 

α≥β , it is beta cutoff
o It is a Min node and

β≤α , it is alpha cutoff

Alpha-Beta Implementation

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v



Alpha-Beta Pruning Properties

• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
– Important: children of the root may have the wrong value
– So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
– Time complexity drops to O(bm/2)
– Doubles solvable depth!
– Full search of, e.g. chess, is still hopeless…

• This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Pseudocode for Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game
v¬MAX-VALUE(state, - ∞ , +∞)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state,a , b) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ¬ - ∞
for a,s in SUCCESSORS(state) do

v ¬ MAX(v,MIN-VALUE(s, a , b))
if v ≥ b then return v
a ¬ MAX(a ,v)

return v

Alpha-Beta Quiz Alpha-Beta Quiz 2

2



Alpha-Beta Quiz 2

10

10

>=100
2

<=2

Alpha beta pruning.  Example 
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Solution : Alpha Beta Properties of α-β

• Pruning does not affect final result.  This means that it gets the exact 
same result as does full minimax.

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O(bm/2)

à doubles depth of search

• A simple example of the value of reasoning about which 
computations are relevant (a form of metareasoning)



Good Enough?

• Chess:

– branching factor b≈35

– game length m≈100

– search space bm/2 ≈ 3550 ≈ 1077

• The Universe:

– number of atoms ≈ 1078

– age ≈ 1018 seconds

– 108 moves/sec x 1078 x 1018 = 10104

The universe

can play chess

- can we?

Effectiveness of Alpha-Beta Search

• Worst-Case
– branches are ordered so that no pruning takes place. In this case alpha-beta gives no improvement over 

exhaustive search

• Best-Case
– each player’s best move is the left-most alternative (i.e., evaluated first)

– in practice, performance is closer to best rather than worst-case

• In practice often get O(b(d/2)) rather than O(bd) 
– this is the same as having a branching factor of sqrt(b), 

• since (sqrt(b))d =  b(d/2)

• i.e., we have effectively gone from b to square root of b

– e.g., in chess go from b ~ 35  to  b ~ 6
• this permits much deeper search in the same amount of time

• Typically twice as deep.

Example

3 4 1 2 7 8 5 6

-which nodes can be pruned?
MAX

MIN

MAX

Final Comments about Alpha-Beta Pruning

• Pruning does not affect final results

• Entire subtrees can be pruned.

• Good move ordering improves effectiveness of pruning

• Repeated states are again possible.

– Store them in memory = transposition table



Resource Limits Resource Limits

• Problem: In realistic games, cannot search to leaves!

• Solution: Depth-limited search
– Instead, search only to a limited depth in the tree
– Replace terminal utilities with an evaluation function for non-

terminal positions

• Example:
– Suppose we have 100 seconds, can explore 10K nodes / sec
– So can check 1M nodes per move
– a-b reaches about depth 8 – decent chess program

• Guarantee of optimal play is gone

• More plies makes a BIG difference

• Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters

• Evaluation functions are always 

imperfect

• The deeper in the tree the 

evaluation function is buried, the 

less the quality of the evaluation 

function matters

• An important example of the 

tradeoff between complexity of 

features and complexity of 

computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)



Video of Demo Limited Depth (10) Cutting off Search

• We cannot search till leaf 

• MinimaxCutoff is identical to MinimaxValue except

1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

• Does it work in practice?

– bm = 106, b=35 →m=4
• 4-ply lookahead is a hopeless chess player!

– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human master
– 12-ply ≈ Deep Blue, Kasparov

Cutting off Search

Evaluate Who's position is STRONG 

Evaluation Functions

• Evaluation functions score non-terminals in depth-limited search

• Let p be a position in the game

• Define the utility function f(p) by

– f(p) =
• largest positive number if p is a win for computer
• smallest negative number if p is a win for opponent
• RCDC – RCDO

– where RCDC is number of rows, columns and diagonals in which computer 
could still win

– and RCDO is number of rows, columns and diagonals in which opponent 
could still win.



Sample Evaluations

• X = Computer; O = Opponent

• X: 6 Win

• O: 4 win 

Evaluation Functions

• Evaluation functions score non-terminals in depth-limited search

• Ideal function: returns the actual minimax value of the position
• In practice: typically weighted linear sum of features:

• e.g. w1=9 with 
– f1(s) = (num white queens – num black queens), etc.

Example: Samuel’s Checker-Playing Program

• It uses a linear evaluation function

f(n) = w1f1(n) + w2f2(n) + ... + wmfm(n)

• For example: f = 6 K + 4 M + U

– K = King Advantage, M = Man Advantage
– U = Undenied Mobility Advantage (number of moves that Max where Min 

has no jump moves)
• In learning mode

– Computer acts as 2 players: A and B
– A adjusts its coefficients after every move
– B uses the static utility function
– If A wins, its function is given to B

Samuel’s Checker Player

• How does A change its function?
• Coefficent replacement

–△(node) = backed-up value(node) – initial value(node)

• if △> 0 then terms that contributed positively are given more 

weight and terms that contributed negatively get less weight

• if △< 0 then terms that contributed negatively are given more 

weight and terms that contributed positively get less weight



Chess: Rich history of cumulative ideas

• Minimax search, evaluation function learning (1950).

• Alpha-Beta search (1966).

• Transposition Tables (1967).

• Iterative deepening DFS (1975).

• End game data bases ,singular extensions(1977, 1980)

• Parallel search and evaluation(1983 ,1985)

• Circuitry (1987)

(Durdarshi) दूरदश% / horizon effect

Evaluation for Pacman Video of Demo Thrashing (d=2)



Why Pacman Starves

• A danger of replanning agents!

– He knows his score will go up by eating the dot now (west, east)

– He knows his score will go up just as much by eating the dot later (east, west)

– There are no point-scoring opportunities after eating the dot (within the horizon, two here)
– Therefore, waiting seems just as good as eating: he may go east, then back west in the next 

round of replanning!

Video of Demo Thrashing -- Fixed (d=2)

Video of Demo Smart Ghosts (Coordination)
Video of Demo Smart Ghosts (Coordination) –

Zoomed In



Agents Getting Along with Other Agents Agents Getting Along with Humans

Status of AI Game

• Checkers: 1950: First computer player.  1994: First 
computer champion: Chinook ended 40-year-reign 
of human champion Marion Tinsley using complete 
8-piece endgame. 2007: Checkers solved!

• Chess: 1997: Deep Blue defeats human champion 
Gary Kasparov in a six-game match.  Deep Blue 
examined 200M positions per second, used very 
sophisticated evaluation and undisclosed methods 
for extending some lines of search up to 40 ply.  
Current programs are even better, if less historic.

• Go :2016: Alpha GO defeats human champion. 
Uses Monte Carlo Tree Search, learned 
evaluation function.

• Pacman

Imperfect Information

• E.g. card games, where opponents’ initial cards are unknown

• Idea: For all deals consistent with what you can see

–compute the minimax value of available actions for each of possible deals
–compute the expected value over all deals



Status of AI Game Players

• Tic Tac Toe
– Tied for best player in world

• Othello
– Computer better than any human
– Human champions now refuse to play 

computer

• Scrabble
– Maven beat world champions Joel Sherman 

and Matt Graham

• Backgammon
– 1992, Tesauro combines 3-ply search & neural 

networks (with 160 hidden units) yielding top-3 
player

• Bridge
– Gib ranked among top players in the world

• Poker
– 2015, Heads-up limit hold'em poker  is solved

• Checkers
– 1994, Chinook ended 40-year reign of human 

champion Marion Tinsley

• Chess
– 1997, Deep Blue beat human champion Gary 

Kasparov in sixgame match
– Deep Blue searches 200M positions/second, up to 

40 ply
– Now looking at other applications (molecular 

dynamics, drug synthesis)

• Go
– 2016, Deepmind’s AlphaGodefeated Lee Sedol & 

2017 defeated Ke Jie

Go Story 

Source: https://www.youtube.com/watch?time_continue=6&v=8tq1C8spV_g&feature=emb_title
https://www.youtube.com/watch?v=8dMFJpEGNLQ

Till 2015 : human 
champions refused to 

compete against computers, 
because software used to be 
too bad
AlphaGo (2016)

https://www.youtube.com/watch?v=c8SLNEpFSrs

Other Game Methods 

• Monte Carlo Tree Search (MCTS) 
– Evaluates states not by applying a heuristic function, but by playing out the game all the way to the 

end and using a rules of that game to see who won.  
– The value of the state is estimated as the average utility over a number of simulations of complete 

games starting from the state.

– Four steps 
• Selection 
• Expansion 
• Simulation 
• Back-propagation 



Other Game Methods 

• Stochastic Games 
– Many unpredictable external events can put us into unforeseen situations. 

– Many games mirror this unpredictability by including a random element, such as the throwing of dice

• Backgammon is a typical game that combines luck and skill. Dice are rolled at the beginning of a 
player’s turn to determine the legal moves. 

Summary

• Games are fun to work on!
• They illustrate several important points about AI.
• Perfection is unattainable →must approximate.
• Game playing programs have shown the world what AI can do.
• Incorporate Heuristics in Game Trees
• Perform Best First Search in Game Trees
• Multi-Player Games for more than two players
• Team Games – Cooperation and Competition
• Probabilistic Games
• Real Life Situations

– Economics
– Reactive Control Systems
– Autonomous Systems

Next 

• Module 3:  Search Strategies
– PART 3.1: Search 
– PART 3.2: Uninformed Search
– PART 3.3: Informed/Heuristic Search 
– PART 3.4: Beyond Classical Search 

• Local Search 
– Generate-and-test
– Hill climbing
– Simulated Analing 

• Problem reduction
– PART 3.5: Adversarial Search
– PART 3.6: Constraint Satisfaction Problems

References 

• Artificial Intelligence by Elaine Rich & Kevin Knight,  Third Ed, Tata McGraw Hill

• Artificial Intelligence and Expert System by Patterson
• http://www.cs.rmit.edu.au/AI-Search/Product/

• http://aima.cs.berkeley.edu/demos.html (for more demos)

• Artificial Intelligence and Expert System by Patterson

• Slides adapted from CS188 Instructor: Anca Dragan, University of California, Berkeley

• Slides adapted from CS60045 ARTIFICIAL INTELLIGENCE

(some slides adapted from 
http://aima.cs.berkeley.edu/)


