Artificial Intelligence
Module 3: Search Strategies

PART 3.6: Constraint Satisfaction Problems

Dr. Chandra Prakash

Assistant Professor
Department of Computer Science and Engineering

(Slides adapted from StuartJ. Russell, B Ravindran, Mausam, Dan Klein and Pieter Abbeel, PP Chakrabarti

Module 3: Search Strategies

PART 3.1: Search
PART 3.2: Uninformed Search
PART 3.3: Informed/Heuristic Search
PART 3.4: Beyond Classical Search
— Local Search

* Generate-and-test

« Hill climbing

« Simulated Analing
— Problem reduction
PART 3.5: Adversarial Search
PART 3.6: Constraint Satisfaction Problems

Exercise : Find the Similarity

M2

M3

M4

Respected Sir, I'm extremely sorry as I couldn't submit my 4_5 Assi; in time. My i was
completed just in time. But I couldn't submit as it stopped takin; onses immediately after the deadline. I'd
be really grateful if you could please allow me to suthhnit, signiifent. I won't repeat this late-submission in

r
browser. So i did ge™{py o\ was not aware about the prepone of the deadline. Sir I have already
shown by code for quigtion ucdietls 2 in class. I have completed my assignment. Sir, could you please

allow me to submit theIT ? 1 will be very thagkf/® you. And I assure you that T won't repeat this mistake.
Respected Sir, I am extremely sorry that I &w t submit the Assignment 4&5 before the deadline. T

completed my work around 1 AM at night. I wa¥Busy giving mz‘%emship exam . Sir, could you please allow

future. . &n
Respected Sir, I am extremely sorry the ‘Lanxa T the 4&5 Assignment before the deadline. Initially
the deadline was of 22 Seft 2\ W feam App in laptop due to some issue. I am using teams in

me to submit the TUT ? I will be very thankful to you. An relyou that I won't repeat this mistake. Thanks

around 2 AM at night. Because I was bu LW, Verbal , Computer Knowledge & Coding rounds of
several internships at D2C platform for tW QkyS(Saturday and Sunday). Sir, could you please allow me to
submit the TUT in the late submission? T will be very thankful to you sir. And I assure you I won't repeat this
mistake ever again. Thanks & Regards.

& Regards.
Respected Sir, T am extremely sorry that T could @&ml the 4&3 before the deadline. T completed my work

Problem formulation for Similarity /Plagiarism

Problem formulation for Deadlines

Consistent Labelling by Constraint Satisfaction

MAP COLOURING

International Departures

= e
TIME-TABLE PREPARATION [sk |

AIRLINE GATE SCHEDULING

Constraint Satisfaction Problems (CSPs)

Standard search problem:

— state is a “black box—any old data structure that supports goal test, eval, successor
— Goal test and Successor can be any function over states

— Part of representation of atomic state
Constraint satisfaction problems (CSPs):
— A special subset of search problems

— state is defined by variables X; with values from domain D; ((sometimes D depends on #)

— goal test is a set of constraints specifying allowable combinations of values for subsets of
variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power than standard search algorithms
Al as search — Al as Represenation — Al as ML Mindset

— Constraint Satisfaction Problem

— Preposition Logic

— Bayesian network

Example: Class

» Representation of atomic state

- CSP
— Understand the problem

— Now we need to understand the structure
of the state i.e class

— factored representation of each state

« set of variable and each variable has a
value

CSP Examples: Map-Coloring

Northern
Territory

Western

Queensland
Australia

South
Australia

New South Wales

Tasmania

Constraint Satisfaction Problems

N variables
domain D

constraints

states goal test
partial assignment

successor function

complete; satisfics constraints assign an unassigned variable

Example: Map Coloring

Variables: A Finite Set of Variables (V, Vs, ..., V,))
- WA, NT, O, NSW, V , SA, T
Domains:
~ Each Variable has a Domain Dy, D,, D, from which it can take a value.

— The Domains may be discrete or continuous domains

- D, = {red, green, blue}

Constrfupts:) » . —
— A Finite Set of Satisfaction Constraints, C;, C,, ...C,

— An assignment that does not violate any is called a c: ent or legal

~ adjacent regions must have different colors
Implicit:
* WA #NT (if the language allows this)
— Explicit:
* (WA,NT)€{ (red,green), (red,blue), (green,
Optimization Criteria (Optional)
~ A Set of Optimization Functions Oy, O,0,
Solutions :
— aconsistent and complete assignment.
are assi. atisfying all

red), .

and the optimization criteria if any e.g.:
— {WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green}

Formulating CSPs

Why CSP 2?

abcd et g
BoB ’ 1. VARIABLES » CSPs yield a natural representation for a wide variety of problems
xBOB . . o . .
MEOY 2. DOMAINS if you already have a CSP-solving system, it is often easier to solve a problem using
MILO i i i i i
-3 3. SATISFACTION CONSTRAINTS it than to design a custom solution using another search technique.
MARLEY
4. OPTIMIZATION CRITERIA
Pz | S SOLUTION » CSP solvers can be faster than state-space searchers because the CSP
solver can quickly eliminate large swatches of the search space.
— For example, once we have chosen {SA = blue} in the Australia problem, we can
conclude that none of the five neighboring variables can take on the value blue.
— Without taking advantage of constraint propagation, a search procedure would have
to consider 3° = 243 assignments for the five neighboring variables; with constraint
propagation we never have to consider blue as a value, so we have only 2° = 32
assignments to look at, a reduction of 87%.
CSP Solution Overview Exercise : Draw CSP Graph
+ CSP Graph Creation: 1t can be helpful to visualize a CSP as a constraint graph

Create a Node for Every Variable. All possible Domain Values are initially Assigned to the Variable
~ Draw edges between Nodes if there is a Binary Constraint. Otherwise Draw a hyper- edge betwee nodes with
constraints involving more than two variables
Constraint Propagation:
Reduce the Valid Domains of Each Variable by Applying Node Consistency, Arc / Edge Consistency, K-Consistency,
till no further reduction is possible.
— Ifasolution is found or the problem found to have no consistent solution, then terminate
Search for Solution:
Apply Search Algorithms to Find Solutions
— There are interesting properties of CSP graphs which lead of efficient algorithms in some cases: Trees, Perfect Graphs,
Interval Graphs, etc
— Tssues for Search: Backiracking Scheme, Ordering of Children, Forward Checking (Look-Ahead) using Dynamic
Constraint Propagation
— Solving by Converting to Satisfiability (SAT) problems

Word List:
astar, happy, hello,
hoses, live, load, loom,
peal, peel, save, talk,
ant, oak, old

Constraint Graphs

Binary CSP: each constraint relates (at most) two variables

constraints

Binary constraint graph: nodes are variables, arcs show ‘@

M

General-purpose CSP algorithms use the graph structure to @
speed up search.

— E.g., Tasmania is an independent subproblem!

o]

Possible only when we understand the structure of the
problem
— each state variable is a node not a state, earlier each state was a
node.

Varieties of CSPs

* Discrete variables
— finite domains; size d = O(d") complete assignments
* e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
— infinite domains (integers, strings, etc.)
* e.g., job scheduling, variables are start/end days for each job
* need a constraint language, e.g., StartJob, + 5 < StartJobs
* linear constraints solvable, nonlinear undecidable
* Continuous variables
e.g., start/end times for Hubble Telescope observations
— linear constraints solvable in poly time by LP methods

Varieties of constraints

Unary or Node constraints
— involve a single variable,
— e.g., SA # green
Binary or Edges constraints
— involve pairs of variables,
— e.g,SA# WA
Higher-order or Hyper-Edge constraints
involve 3 or more variables,
— e.g., cryptarithmetic column constraints
Preferences (soft constraints),
— e.g., red is better than green
— often representable by a cost for each variable assignment — constrained optimization
problems (We’ll ignore these until we get to Bayes’ nets)

Example: Cryptarithmetic

Variables:
FTUWROXI X2X3
Domains:
{0,1,2,3,4,5,6,7,8,9}
« Constraints:
[— alldiff(F, T,U, W, R, O)]

[—O+O:R+10‘X1,etcA]

Example: Sudoku

= Variables:

= Each (open) square

T 8 = Domains:
| T 17 (8] 4 . (12,9
8|4 116 = Constraints:
5 1 9-way alldiff for each column
1 318 9
6 8 4 3 9-way alldiff for each row
2 915 1 9-way alldiff for each region
7 2 (or can have a bunch of
718 206 pairwise inequality constraints)
2 3

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling
Factory scheduling

Circuit layout

Fault diagnosis
« ... lots more!

* Many real-world problems involve real-valued variables...

Solving CSPs: Mapping problem

Initial State :

— not assigned any variable whatsoever
Sucessor variable:

— assigned / variables

— n-/ options for assignment

each variable possible d values
— children :
s n-l*d

Solution is at :

— n depth
How many leaves do we have:

— n*d + (n-1)*d+n-2)*d + =nld"

Standard Search Formulation (incremental)

« Standard search formulation of CSPs

« States defined by the values assigned so far (partial assignments)
Initial state: the empty assignment, {}
— Successor function: assign a value to an unassigned variable that
does not conflict with current assignment.
= fail if no legal assignments (not fixable!)
Goal test: the current assignment is complete and satisfies all
constraints

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables
= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b = (n — I)d at depth /, hence n!d" leaves!!!!

« We’ll start with the straightforward, naive approach, then improve it

Search Methods

« What would BFS do?

{1
[{WA=g} {WA=r} {WA=b} {NT=g¢} ...]

Search Methods

* What would BFS do?

* What would DFS do?

— let’s see!

* What problems does naive search have?

Video of Demo Coloring -- DFS

CSp

« Inregular state-space search, an algorithm can do only one thing: search.

 In CSPs there is a choice:
— an algorithm can search (choose a new variable assignment from several possibilities) or
— do a specific type of inference called constraint propagation:
« using the constraints to reduce the number of legal values for a variable, which in turn
can reduce the legal values for another variable, and so on

Constraint propagation may be intertwined with search, or it may be done as a
preprocessing step, before search starts.

2. Constraint Propagation Steps

» Constraints
— Unary Constraints or Node Constraints
— Binary Constraints or Edges between CSP Nodes
— Higher order or Hyper-Edges between CSP Nodes
* Node Consistency
— For every Variable V;, remove all elements of D; that do not satisfy the Unary Constraints for the Variable
First Step is to reduce the domains using Node Consistency
* Arc Consistency

— For every element x;; of D, for every edge from V; to V;, remove x;; if it has no consistent value(s) in other
domains satisfying the Constraints

— Continue to iterate using Arc Consistency till no further reduction happens.
» K-Consi y or Path Consi Yy
— For every element y;; of D;, choose a Path of length L with L variables, use a consistency checking method
similar to above to reduce domains if possible

* Global constraints

CSP Graph for Crossword

Applying Node Consistency:

D1 = {astar, happy, hello, hoses}

D2 = {live, load, loom, peal, peel, save, talk}
D3 = {ant, oak, old}

D4 = {live, load, loom, peal, peel, save, talk}

NOW APPLY ARC CONSISTENCY

Word List:
astar, happy, hello, D1 = {astar, happy, hello, hoses}
hoses, live, load, loom,
peal, peel, save, talk,

ant, oak, old D3 = {ant, oak, old}

Applying Arc Consistency:

D2 = {live, load, loom, peal, peel, save, talk}

D4 = {live, load, loom, peal, peel, save, talk}

CSP Graph for Crossword

Applying Node Consistency:

D1 = {astar, happy, hello, hoses}

D2 = {live, load, loom, peal, peel, save, talk}
D3 = {ant, oak, old}

D4 = {live, load, loom, peal, peel, save, talk}

NOW APPLY ARC CONSISTENCY
DI-D2,DI-D3, D2-D4, D3-D4

M Applying Arc Consistency:

astar, happy, hello, DI = {§gar, hagpy, hello, hgs}

hoses, live, load, loom,

peal, peel, save, talk, D2 = {I§ge, load, loom, peal, g1, sayg, P}
ant, oak, old D3 = (9, oak, old}

D4 = {§e, load, 13¢m, pdgL. pYQ. s§e. talk}

Arc Consistency Algorithm AC-3

AC-3(csp) // inputs - CSP with variables, domains, constraints
1. queue + local variable initialized to all arcs in csp

2. while queue is not empty do

3. (X:.X;) < pop(queue)

4 if Revise(csp, Xi, X;) then

5% if size of D; = O then return false

6 for each X, in X..neighbors-{X} do

7. add (X«. X)) to queue

8. return true

Revise(csp, X, X;)

1. revised + false

2. foreachxin D; do

3. if no value y in D; allows (x. y) to satisfy constraint between X; and X; then
4. delete x from D;

5. revised « true

6. return revised

Solve: Airline Gate Scheduling

lgmmmm O ()

7:00 6:15 7:15
F2 8:30 7:45 8:45

F3 745 7:00 8:00 °
F4 9:45 9:00 10:00 °

F5 10:00 9:15 10:15 I
F6 9:00 8:15 9:15
F7 11:00 10:15 11:15 ° Q

¢ Three gates { 1,2,3} °

* Minimize gate Dom : 7 Gates

Consistency for Airline Gate Scheduling

* Three gates { 1,2,3} ° e
 Fiight No_| Dep Time | G Start_| GEnd _|
Fl 700

6:15 715
F2 8:30 745 8:45
F3 7:45 7:.00 8:00 °
F4 9:45 900 10:00 °
F5 10:00 9:15 10:15
F6 9:00 8:15 9:15
[F7/ 11:00 10:15 11:15 ° °
+ {12}

Backtracking Algorithm for CSP

CSP-BACKTRACKING({})

CSP-BACKTRACKING(a)

—Ifais complete then return a

— X « select unassigned variable

— D «—select an ordering for the domain of X

~ For each value v in D do

« If v is consistent with a then

—Add(X=v)toa
~ result «— CSP-BACKTRACKING(a)
~ If result # failure then return result

— Return failure

Backtracking for Airline Gate Scheduling

* Two gates { 1,2} ° e
.00 H

ool

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
— Variable assignments are commutative, so fix ordering -> better branching factor!
— Le., [WA = red then NT = green] same as [NT = green then WA = red]

Only need to consider assignments to a single variable at each step
= b = d and there are d" leaves

Idea 2: Check constraints as you go
Ie. consider only values which do not conflict previous assignments
— Might have to do some computation to check the constraints
“Incremental goal test”

Backtracking search
— Depth-first search with these two improvements is called backtracking search
— Depth-first search for CSPs with single-variable assignments

Can solve n-queens for n ~ 25

Backtracking Search

function BACKTRACKING-SEARCH(cs,
return RECURSIVE-BACKTRACKINC

rurns solution/failure

sp)

function RECURSIVE-BACKTRACKING(@ssignment, csp) returns soln /failure
if assignment is complete then return assignment

ar — SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp), assignment, csp)

or each value in ORDER-DOMAIN-VALUEY(var, assignment, csp) do

iffvaluc is consistent with assignment]given CONSTRAINTS[csp] then
2dd {var = valuc) to assignment

result — RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = valuc} from assignment

return failure

« Backtracking = DFS + variable-ordering + fail-on-violation
* What are the choice points?

Backtracking : Map Coloring Example

Ro

A ez LN
o & Sy

/\ Toskis

o & jg’;éi

Quesnsiand

— 3

s o

Video of Demo Coloring — Backtracking

Improving Backtracking efficiency

Initial Constraint Propagation
General-purpose ideas give huge gains in speed I—r;
Ordering: 1

Which variable should be assigned next?

(3
* Most Constrained Variable / Minimum Remaining Values « vl ¢) ‘i vl

+ Most Constraining Variable
— In what value / order should its values be tried?

+ Least Constraining Value leaving maximum flexibility ‘}‘l’; ‘P&
g I~

Filtering:

Can we detect inevitable failure early?
Can we take advantage of problem structure?
Dependency Directed Backtracking
Other CSP Search Algorithms :
SAT Formulations and Solvers
— Optimization
* Branch-and-Bound
« SMT Solvers, Constraint Programming
Learning, Memoizing,CSP Problems are NP-Hard in Genera

Ordering: Minimum Remaining Values (MRV)

* Variable Ordering: Minimum remaining values (MRV):
— Choose the variable with the fewest legal left values in its domain =

* Why min rather than max?
* Also called “most constrained variable”
* “Fail-fast” ordering

Degree heuristic

¢ Tie-breaker among MRYV variables
* Degree heuristic:
— choose the variable with the most constraints on remaining variables

D

Ordering: Least Constraining Value

+ Value Ordering: Least Constraining Value
— Given a choice of variable, choose the least constraining value =

« the one that rules out the fewest values in the remaining variables
— Note that it may take some computation to determine this! (E.g., rerunning e

filtering)
‘P‘% Allows 1 value for SA
‘_L;__ d“_ﬁ: _"_L’: < ‘Pﬁ% Allows 0 values for SA . - ﬂ

* Why least rather than most?
» Combining these ordering ideas makes 1000 queens feasible

Filtering: Forward Checking

+ Filtering: Keep track of domains for unassigned variables and cross off bad options
Forward checking:
— Forward checking propagates information from assigned to unassigned variables
~ Cross off values that violate a constraint when added to the existing assignment
Terminate search when any variable has no legal values

WA NT Q NSW v SA

LI T IC I

Filtering: Constraint Propagation

« Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q Nsw v SA
, ‘ Tk I 1o T 1R i
= o (| FEEIEECEEEE] o
: (| (W[[s EEoE] (N

* NT and SA cannot both be blue!
* Why didn’t we detect this yet?
« Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

+ Simplest form of propagation makes each arc consistent
¢ Anarc X — Y is consistent iff
for every x in the (X) tail there is some y in the head
— which could be assigned without violating a constraint

V% WA NT Q NSW v SA
v L

Forward checking?
Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

« A simple form of propagation makes sure all arcs are consistent:

NT * WA NT Q NSW Y SA
v '\y

« Important: If X loses a value, neighbors of X need to be rechecked!

« Arc consistency detects failure earlier than forward checking

« Can be run as a preprocessor or after each assignment

* What’s the downside of enforcing arc consistency?

Enforcing Arc Consistency in a CSP

Limitations of Arc Consistency

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;. X. ... X,}
local \miablc queue of arcs, initially all the arcs in csp
while gucuc is not empty do
X,. X,) — REMOVE-FIRST(qucuc)
if [RENOVE TNCONSISTENT VALUES(X:. X) then
Tor each X, in NEIGHGORS[X] do

2 (5 XJto guer

function REMOVE-INCONSISTENT-VALUES(Y., X,) returns true iff succeeds

removed — false

for each rin DOMAIN[X]] do
if no value y in DOMAIN[X] allows (z,5) to satisfy the constraint X; — X;
then delete + from DOMAIN[X(]; removed — true

return removed

* Runtime: O(nd?), can be reduced to O(nd?)
* ... but detecting all possible future problems is NP-hard — why?

* After enforcing arc consistency:
Can have one solution left
— Can have multiple solutions left

— Can have no solutions left (and not
know it)

* Arc consistency still runs inside a
backtracking search!

K-Consistency

Problem Structure

Increasing degrees of consistency

— 1-Consistency (Node Consistency): Each single node’s domain has a .
value which meets that node’s unary constraints

— 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

K-Consistency: For each k nodes, any consistent assignment to k-1 .
can be extended to the k" node.

Higher k more expensive to compute

(You need to know the k=2 case: arc consistency) @

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint |

graph @
©

Suppose each subproblem has ¢ variables out of # total

M

d

Worst-case solution cost is n/cd¢, linear in n
E.g.,

-n=80,d=2,c=20

— 280 =4 billion years at 10 million nodes/sec

©

— 4220 = 0.4 seconds at 10 million nodes/sec

Performance of Min-Conflicts

Summary

Given random initial state, can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n=10,000,000)!

The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio
_ number of constraints

R= -
number of variables

CPU
time

critical
ratio

+ CSPs are a special kind of problem:
— states defined by values of a fixed set of variables
— goal test defined by constraints on variable values
* Backtracking = depth-first search with one variable assigned per node
* Variable ordering and value selection heuristics help significantly
« Forward checking prevents assignments that guarantee later failure
« Constraint propagation (e.g., arc consistency) does additional work to constrain values and
detect inconsistencies
* The CSP representation allows analysis of problem structure
+ Tree-structured CSPs can be solved in linear time
« Iterative min-conflicts is usually effective in practice

Home Work : Formulate CSP

* Crossword
« Flight Gate Scheduling

* Mention
1. VARIABLES
2. DOMAINS
— 3. SATISFACTION CONSTRAINTS
— 4. OPTIMIZATION CRITERIA

5. SOLUTION
— CSP Graph

» Apply Node Consistency

» Apply Arc Consistency

. VARIABLES

Word List: DOMAINS

PN

. SATISFACTION
astar, hgppy, hello, CONSTRAINTS
hoses, live, load, loom, || . opTimizaTioN

CRITERIA

peal, peel, save, talk, . socirmon

ant, oak, old

 Fiight No | Dep Time [GStart_|GEnd _|
F1 7:.00 6:15 715

F2 8:30 745 845

F3 745 7:00 8:00

F4 945 9:00 10:00

F5 10:00 9:15 10:15

F6 9:00 8:15 915

F7 11:00 10:15 11:15

Next :

* Module 4: Logic and Deduction

References

(for more demos)

Artificial Intelligence and Expert System by Patterson

%‘i‘iﬁw@

(some slides adapted from
http://aima.cs.berkeley.edu/)

Artificial Intelligence by Elaine Rich & Kevin Knight, Third Ed, Tata McGraw Hill
Artificial Intelligence and Expert System by Patterson

Slides adapted from CS188 Instructor: Anca Dragan, University of California, Berkeley
Slides adapted from CS60045 ARTIFICIAL INTELLIGENCE

