
Artificial Intelligence

Module 3: Search Strategies

PART 3.6: Constraint Satisfaction Problems

Dr. Chandra Prakash
Assistant Professor

Department of Computer Science and Engineering

(Slides adapted from StuartJ. Russell, B Ravindran, Mausam, Dan Klein and Pieter Abbeel, PP Chakrabarti

Module 3: Search Strategies

• PART 3.1: Search

• PART 3.2: Uninformed Search

• PART 3.3: Informed/Heuristic Search

• PART 3.4: Beyond Classical Search

– Local Search

• Generate-and-test

• Hill climbing

• Simulated Analing

– Problem reduction

• PART 3.5: Adversarial Search

• PART 3.6: Constraint Satisfaction Problems

Exercise : Find the Similarity

• Respected Sir, I'm extremely sorry as I couldn't submit my 4_5 Assignment in time. My assignment was
completed just in time. But I couldn't submit as it stopped taking responses immediately after the deadline. I'd
be really grateful if you could please allow me to submit the assignment. I won't repeat this late-submission in
future.

• Respected Sir, I am extremely sorry that I could not submit the 4&5 Assignment before the deadline. Initially
the deadline was of 22 ' September ..I don't have Team App in laptop due to some issue. I am using teams in
browser. So i did get any notification and I was not aware about the prepone of the deadline. Sir I have already
shown by code for question 1 & questions 2 in class. I have completed my assignment. Sir, could you please
allow me to submit the TUT ? I will be very thankful to you. And I assure you that I won't repeat this mistake.

• Respected Sir, I am extremely sorry that I could not submit the Assignment 4&5 before the deadline. I
completed my work around 1 AM at night. I was busy giving my internship exam . Sir, could you please allow
me to submit the TUT ? I will be very thankful to you. And I assure you that I won't repeat this mistake. Thanks
& Regards.

• Respected Sir, I am extremely sorry that I could not submit the 4&5 before the deadline. I completed my work
around 2 AM at night. Because I was busy in Aptitude , Verbal , Computer Knowledge & Coding rounds of
several internships at D2C platform for two days (Saturday and Sunday). Sir, could you please allow me to
submit the TUT in the late submission? I will be very thankful to you sir. And I assure you I won't repeat this
mistake ever again. Thanks & Regards.

Plagiarism

or
not ??

M1

M2

M3

M4

Problem formulation for Similarity /Plagiarism Problem formulation for Deadlines

Consistent Labelling by Constraint Satisfaction Constraint Satisfaction Problems (CSPs)
• Standard search problem:

– state is a “black box”—any old data structure that supports goal test, eval, successor
– Goal test and Successor can be any function over states
– Part of representation of atomic state

• Constraint satisfaction problems (CSPs):
– A special subset of search problems
– state is defined by variables Xi with values from domain Di ((sometimes D depends on i)
– goal test is a set of constraints specifying allowable combinations of values for subsets of

variables
• Simple example of a formal representation language
• Allows useful general-purpose algorithms with more power than standard search algorithms
• AI as search → AI as Represenation → AI as ML Mindset

– Constraint Satisfaction Problem
– Preposition Logic
– Bayesian network

Example: Class
• Representation of atomic state

• CSP
– Understand the problem

– Now we need to understand the structure
of the state i.e class

– factored representation of each state

• set of variable and each variable has a
value

CSP Examples: Map-Coloring

Constraint Satisfaction Problems

N variables

x1

x2

domain D

constraints

states goal test successor function
partial assignment complete; satisfies constraints assign an unassigned variable

Example: Map Coloring
• Variables: A Finite Set of Variables (V1, V2, …., Vn)

– WA, NT, Q, NSW, V , SA, T
• Domains:

– Each Variable has a Domain D1, D2, …., Dn from which it can take a value.
– The Domains may be discrete or continuous domains
– Di = {red, green, blue}

• Constraints:
– A Finite Set of Satisfaction Constraints, C1, C2, …Cm
– An assignment that does not violate any constraints is called a consistent or legal assigmemt .
– adjacent regions must have different colors
– Implicit:

• WA ≠NT (if the language allows this)
– Explicit:

• (WA,NT)∈{(red,green),(red,blue),(green,red),. . .}
• Optimization Criteria (Optional)

– A Set of Optimization Functions O1, O2, ….Op

• Solutions :
– a consistent and complete assignment.
– are assignments satisfying all constraints, and the optimization criteria if any e.g.:
– {WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green}

Formulating CSPs

1. VARIABLES

2. DOMAINS

3. SATISFACTION CONSTRAINTS

4. OPTIMIZATION CRITERIA

5. SOLUTION

Why CSP ??

• CSPs yield a natural representation for a wide variety of problems
– if you already have a CSP-solving system, it is often easier to solve a problem using

it than to design a custom solution using another search technique.

• CSP solvers can be faster than state-space searchers because the CSP
solver can quickly eliminate large swatches of the search space.
– For example, once we have chosen {SA = blue} in the Australia problem, we can

conclude that none of the five neighboring variables can take on the value blue.
– Without taking advantage of constraint propagation, a search procedure would have

to consider 35 = 243 assignments for the five neighboring variables; with constraint
propagation we never have to consider blue as a value, so we have only 25 = 32
assignments to look at, a reduction of 87%.

CSP Solution Overview

• CSP Graph Creation:
– Create a Node for Every Variable. All possible Domain Values are initially Assigned to the Variable

– Draw edges between Nodes if there is a Binary Constraint. Otherwise Draw a hyper- edge betwee nodes with
constraints involving more than two variables

• Constraint Propagation:
– Reduce the Valid Domains of Each Variable by Applying Node Consistency, Arc / Edge Consistency, K-Consistency,

till no further reduction is possible.
– If a solution is found or the problem found to have no consistent solution, then terminate

• Search for Solution:
– Apply Search Algorithms to Find Solutions
– There are interesting properties of CSP graphs which lead of efficient algorithms in some cases: Trees, Perfect Graphs,

Interval Graphs, etc

– Issues for Search: Backtracking Scheme, Ordering of Children, Forward Checking (Look-Ahead) using Dynamic
Constraint Propagation

– Solving by Converting to Satisfiability (SAT) problems

Exercise : Draw CSP Graph

It can be helpful to visualize a CSP as a constraint graph

Constraint Graphs

• Binary CSP: each constraint relates (at most) two variables

• Binary constraint graph: nodes are variables, arcs show
constraints

• General-purpose CSP algorithms use the graph structure to
speed up search.
– E.g., Tasmania is an independent subproblem!

• Possible only when we understand the structure of the
problem
– each state variable is a node not a state, earlier each state was a

node.

Varieties of CSPs

• Discrete variables
– finite domains; size d ⇒ O(dn) complete assignments

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

– infinite domains (integers, strings, etc.)

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• linear constraints solvable, nonlinear undecidable

• Continuous variables
– e.g., start/end times for Hubble Telescope observations

– linear constraints solvable in poly time by LP methods

Varieties of constraints

• Unary or Node constraints
– involve a single variable,
– e.g., SA ≠ green

• Binary or Edges constraints
– involve pairs of variables,
– e.g., SA ≠ WA

• Higher-order or Hyper-Edge constraints
– involve 3 or more variables,
– e.g., cryptarithmetic column constraints

• Preferences (soft constraints),
– e.g., red is better than green
– often representable by a cost for each variable assignment → constrained optimization

problems (We’ll ignore these until we get to Bayes’ nets)

Example: Cryptarithmetic

• Variables:
– F T U W R O X1 X2 X3

• Domains:
– {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• Constraints:
– alldiff(F, T,U, W, R, O)

– O + O = R + 10 · X1, etc.

X1

Example: Sudoku

§ Variables:

§ Each (open) square

§ Domains:

§ {1,2,…,9}

§ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of
pairwise inequality constraints)

Real-World CSPs

• Assignment problems: e.g., who teaches what class
• Timetabling problems: e.g., which class is offered when and where?
• Hardware configuration
• Transportation scheduling
• Factory scheduling
• Circuit layout
• Fault diagnosis
• … lots more!

• Many real-world problems involve real-valued variables…

Solving CSPs: Mapping problem
• Initial State :

– not assigned any variable whatsoever

• Sucessor variable:
– assigned l variables

– n-l options for assignment

– each variable possible d values

– children :

• n-l* d
• Solution is at :

– n depth

• How many leaves do we have:
– n*d + (n-1)*d+(n-2)*d + = n!dn

Standard Search Formulation (incremental)
• Standard search formulation of CSPs

• States defined by the values assigned so far (partial assignments)
– Initial state: the empty assignment, {}
– Successor function: assign a value to an unassigned variable that

does not conflict with current assignment.
• ⇒ fail if no legal assignments (not fixable!)

– Goal test: the current assignment is complete and satisfies all
constraints

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables
⇒ use depth-first search

3) Path is irrelevant, so can also use complete-state formulation
4) b = (n − l)d at depth l, hence n!dn leaves!!!!

• We’ll start with the straightforward, naïve approach, then improve it

Search Methods

• What would BFS do?

{}
{WA=g} {WA=r} {NT=g}{WA=b} …

Search Methods

• What would BFS do?

• What would DFS do?
– let’s see!

• What problems does naïve search have?

Video of Demo Coloring -- DFS CSP

• In regular state-space search, an algorithm can do only one thing: search.

• In CSPs there is a choice:
– an algorithm can search (choose a new variable assignment from several possibilities) or

– do a specific type of inference called constraint propagation:

• using the constraints to reduce the number of legal values for a variable, which in turn
can reduce the legal values for another variable, and so on

• Constraint propagation may be intertwined with search, or it may be done as a
preprocessing step, before search starts.

2. Constraint Propagation Steps
• Constraints

– Unary Constraints or Node Constraints

– Binary Constraints or Edges between CSP Nodes

– Higher order or Hyper-Edges between CSP Nodes

• Node Consistency
– For every Variable Vi, remove all elements of Di that do not satisfy the Unary Constraints for the Variable

– First Step is to reduce the domains using Node Consistency

• Arc Consistency
– For every element xij of Di, for every edge from Vi to Vj, remove xij if it has no consistent value(s) in other

domains satisfying the Constraints

– Continue to iterate using Arc Consistency till no further reduction happens.

• K-Consistency or Path Consistency
– For every element yij of Di, choose a Path of length L with L variables, use a consistency checking method

similar to above to reduce domains if possible

• Global constraints

CSP Graph for Crossword

Applying Node Consistency:
D1 = {astar, happy, hello, hoses}
D2 = {live, load, loom, peal, peel, save, talk}
D3 = {ant, oak, old}
D4 = {live, load, loom, peal, peel, save, talk}

NOW APPLY ARC CONSISTENCY

Applying Arc Consistency:
D1 = {astar, happy, hello, hoses}

D2 = {live, load, loom, peal, peel, save, talk}

D3 = {ant, oak, old}

D4 = {live, load, loom, peal, peel, save, talk}

CSP Graph for Crossword

Applying Node Consistency:
D1 = {astar, happy, hello, hoses}
D2 = {live, load, loom, peal, peel, save, talk}
D3 = {ant, oak, old}
D4 = {live, load, loom, peal, peel, save, talk}

NOW APPLY ARC CONSISTENCY
D1 - D2 , D1 – D3 , D2-D4, D3-D4

Applying Arc Consistency:
D1 = {astar, happy, hello, hoses}

D2 = {live, load, loom, peal, peel, save, talk}

D3 = {ant, oak, old}

D4 = {live, load, loom, peal, peel, save, talk}

Arc Consistency Algorithm AC-3

Solve: Airline Gate Scheduling

• Three gates { 1,2,3}
• Minimize gate Dom : 7 Gates

Consistency for Airline Gate Scheduling

• Three gates { 1,2,3}

• {1,2}

Backtracking Algorithm for CSP

CSP-BACKTRACKING({})

CSP-BACKTRACKING(a)
– If a is complete then return a
– X ← select unassigned variable

– D ←select an ordering for the domain of X
– For each value v in D do

• If v is consistent with a then
– Add (X= v) to a

– result ← CSP-BACKTRACKING(a)

– If result ≠ failure then return result

– Return failure

Backtracking for Airline Gate Scheduling

• Two gates { 1,2}

Backtracking Search

• Backtracking search is the basic uninformed algorithm for solving CSPs

• Idea 1: One variable at a time
– Variable assignments are commutative, so fix ordering -> better branching factor!
– I.e., [WA = red then NT = green] same as [NT = green then WA = red]
– Only need to consider assignments to a single variable at each step
⇒ b = d and there are dn leaves

• Idea 2: Check constraints as you go
– I.e. consider only values which do not conflict previous assignments
– Might have to do some computation to check the constraints
– “Incremental goal test”

• Backtracking search
– Depth-first search with these two improvements is called backtracking search
– Depth-first search for CSPs with single-variable assignments

• Can solve n-queens for n » 25

Backtracking Search

• Backtracking = DFS + variable-ordering + fail-on-violation

• What are the choice points?

Backtracking : Map Coloring Example Video of Demo Coloring – Backtracking

Improving Backtracking efficiency
• Initial Constraint Propagation

• General-purpose ideas give huge gains in speed

• Ordering:
– Which variable should be assigned next?

• Most Constrained Variable / Minimum Remaining Values

• Most Constraining Variable

– In what value / order should its values be tried?

• Least Constraining Value leaving maximum flexibility

• Filtering:
– Can we detect inevitable failure early?

• Preventing useless Search ahead

– Can we take advantage of problem structure?

• Dependency Directed Backtracking
• Other CSP Search Algorithms :

– SAT Formulations and Solvers

– Optimization
• Branch-and-Bound

• SMT Solvers, Constraint Programming
– Learning, Memoizing,CSP Problems are NP-Hard in Genera

Ordering: Minimum Remaining Values (MRV)

• Variable Ordering: Minimum remaining values (MRV):
– Choose the variable with the fewest legal left values in its domain

• Why min rather than max?
• Also called “most constrained variable”
• “Fail-fast” ordering

Degree heuristic

• Tie-breaker among MRV variables
• Degree heuristic:

– choose the variable with the most constraints on remaining variables

Ordering: Least Constraining Value

• Value Ordering: Least Constraining Value
– Given a choice of variable, choose the least constraining value

• the one that rules out the fewest values in the remaining variables
– Note that it may take some computation to determine this! (E.g., rerunning

filtering)

• Why least rather than most?
• Combining these ordering ideas makes 1000 queens feasible

Filtering: Forward Checking
• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking:

– Forward checking propagates information from assigned to unassigned variables

– Cross off values that violate a constraint when added to the existing assignment

– Terminate search when any variable has no legal values

WA
SA
NT Q

NSW
V

Filtering: Constraint Propagation

• Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

• NT and SA cannot both be blue!
• Why didn’t we detect this yet?
• Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V

Consistency of A Single Arc

• Simplest form of propagation makes each arc consistent
• An arc X ® Y is consistent iff

– for every x in the (X) tail there is some y in the head
– which could be assigned without violating a constraint

Forward checking?
Enforcing consistency of arcs pointing to each new assignment

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
• A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment

• What’s the downside of enforcing arc consistency?

Remember: Delete
from the tail!

WA SA
NT Q

NSW

V

Enforcing Arc Consistency in a CSP

• Runtime: O(n2d3), can be reduced to O(n2d2)
• … but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency

• After enforcing arc consistency:
– Can have one solution left

– Can have multiple solutions left

– Can have no solutions left (and not
know it)

• Arc consistency still runs inside a
backtracking search!

K-Consistency
• Increasing degrees of consistency

– 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

– 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

– K-Consistency: For each k nodes, any consistent assignment to k-1
can be extended to the kth node.

• Higher k more expensive to compute

• (You need to know the k=2 case: arc consistency)

Problem Structure

• Tasmania and mainland are independent subproblems
• Identifiable as connected components of constraint

graph

• Suppose each subproblem has c variables out of n total
• Worst-case solution cost is n/c·dc, linear in n
• E.g.,

– n = 80, d = 2, c = 20

– 280 = 4 billion years at 10 million nodes/sec

– 4 · 220 = 0.4 seconds at 10 million nodes/sec

Performance of Min-Conflicts

• Given random initial state, can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n = 10,000,000)!

• The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Summary

• CSPs are a special kind of problem:
– states defined by values of a fixed set of variables
– goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable assigned per node
• Variable ordering and value selection heuristics help significantly
• Forward checking prevents assignments that guarantee later failure
• Constraint propagation (e.g., arc consistency) does additional work to constrain values and

detect inconsistencies
• The CSP representation allows analysis of problem structure
• Tree-structured CSPs can be solved in linear time
• Iterative min-conflicts is usually effective in practice

Home Work : Formulate CSP

• Crossword

• Flight Gate Scheduling

• Mention
– 1. VARIABLES
– 2. DOMAINS
– 3. SATISFACTION CONSTRAINTS
– 4. OPTIMIZATION CRITERIA
– 5. SOLUTION
– CSP Graph

• Apply Node Consistency

• Apply Arc Consistency

Next :

• Module 4: Logic and Deduction

References

• Artificial Intelligence by Elaine Rich & Kevin Knight, Third Ed, Tata McGraw Hill

• Artificial Intelligence and Expert System by Patterson
• http://www.cs.rmit.edu.au/AI-Search/Product/

• http://aima.cs.berkeley.edu/demos.html (for more demos)

• Artificial Intelligence and Expert System by Patterson

• Slides adapted from CS188 Instructor: Anca Dragan, University of California, Berkeley

• Slides adapted from CS60045 ARTIFICIAL INTELLIGENCE

(some slides adapted from
http://aima.cs.berkeley.edu/)

