

State-space representation

- In Search Strategies, the states are represented as
 - Atomic representation
 - Treated as black box
 - Many factors are ignored, e.g., gas in car, money available for toll, etc.
- · To include more factors in our state representation, we have
 - Factored Representation
 - Each state will be represented with
 - Factors
 - Each factor can be a Boolean or real-valued variable
 - E.g., City Arad can now be represented as
 - {"lat": 46.1866, "lon": 21.3123, "has_gas_till_next_station": yes}

Factored Representation

- · Why do we need Factored representation
 - To reason about steps
 - To learn new knowledge about the environment
 - To adapt to changes to the existing knowledge
 - Accept new tasks in the form of explicit goals
 - To overcome partial observability of environment
 - E.g., Arad to Bucharest via Sibiu
 - If Sibiu has road blocked, then the agent should take a different path
 - i.e., to build Knowledge-based Agents

Entailment by model checking

- Define *α*₁= "There is no pit in [1, 2]"
- In every model, where KB is true, α₁ is also true
- $\alpha_1 = "[1, 2]$ is safe"
- Hence, $KB \vDash \alpha_1$
- $M(KB) \subseteq M(\alpha_1)$
- Model Checking: This enumeration of all models to verify logical inference (entailment) is called Model Checking

PROPOSITIONAL LOGIC A simple representation language for building knowledge-based agents	BNF (I	Backus	-Naur Form proposit	n) gra ional ^{conne}	umm logi	ar o c	of sent	ences in	priority
 Proposition Symbol – A symbol that stands for a proposition. E.g., W_{1,3} – "Wumpus in [1,3]" is a proposition and W_{1,3} is the symbol Syntax: Atomic sentences: P, Q, Usually represented with uppercase letter and may contain other letters or subscripts. E.g., P, Q, R, W1,3, North Connectives: ~ / ¬, Λ, V, → Large, compound or complex statement are constructed from basic propositions by <u>combining them with connectives</u>. Semantics Truth Tables : True and False Inference Modus Ponens Resolution 	$\begin{array}{rcrc} Sentence \rightarrow \\ AtomicSentence \rightarrow \\ ComplexSentence \rightarrow \\ & $	AtomicSentr True False (Sentence) \neg Sentence \land Sentence \land Sentence \Leftrightarrow Sentence \Leftrightarrow $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$ Q false true false true	ence Completizientime e P Q R [Sentence] Sentence Sentence Sentence Sentence Sentence True for true for false for false true	Connec assertion negation conjunct disjuncti implicati equivale NQ lse lse ue	tive P = P + Q P = P + Q	Sym	bols NOT & NOT & AND OR if .then if and only if $P \Rightarrow Q$ true true false true	Read as "p is true" "p is false" "toth p and are true" "toth p and are true" "toth p and are are true" "i p is true, then q is t "p implies q" "p and q are either both true $P \Leftrightarrow Q$ true false true	2, or both " true" e or both fa

Propositional Theorem Proving

- Theorem Proving
 - applying rules of inference directly to sentences in our KB to prove query sentence without consulting models
- Logical Equivalence
 - two sentences α and β are logically equivalent if they are true in the same set of models denoted as $\alpha \equiv \beta$

Propositional Theorem Proving -Logical Equivalence Laws

$(\alpha \land \beta) = (\beta \land \alpha)$ commutativity of \land	
$(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor	
$(\alpha \land \beta) = (\beta \land \alpha)$ commutativity of \land	
$((\alpha \lor \beta) \lor \gamma) = (\alpha \lor (\beta \lor \gamma))$ associativity of \lor	
$((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor	
$(\alpha \rightarrow \beta) = (-\beta \rightarrow -\alpha)$, controposition	
$(\alpha \Rightarrow \beta) = (\neg \beta \Rightarrow \neg \alpha)$ contraposition	
$(\alpha \Rightarrow \beta) = (\neg \alpha \lor \beta)$ implication eminiation	
$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination	
$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan	
$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan	
$(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor	
$(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land	

Deduction Using Propositional Lo	ogic: Example 3	Deduction Using Propos	itional Logic: Example 4 & 5
$\begin{array}{c} \mbox{If I am the Student President then I am well-known. I am the Student President.}\\ \hline So I am well-known\\ \hline Coding: Yuriables\\ a: I am the Student President\\ b: I am well-known\\ \hline Coding the sentences:\\ \hline FI: a \rightarrow b\\ F2: a\\ G: b\\ \hline The final formula for deduction: (F1 A F2) \rightarrow G, that is: ((a \rightarrow b) A a) \rightarrow b\\ \hline \hline a & b & a \rightarrow b & (a \rightarrow b)Aa & ((a \rightarrow b)Aa) \rightarrow b\\ \hline \hline a & b & a \rightarrow b & (a \rightarrow b)Aa & ((a \rightarrow b)Aa) \rightarrow b\\ \hline \hline a & b & a \rightarrow b & (a \rightarrow b)Aa & ((a \rightarrow b)Aa) \rightarrow b\\ \hline \hline a & f & T & T & T\\ \hline T & F & F & F & T\\ \hline F & T & F & T & F\\ \hline F & T & F & T & T\\ \hline \end{array}$	If Rajat is the Student President then Rajat is wellknown. Rajat is the Student President. So Rajat is well known Coding: Variables a: Rajat is well-known Coding the sentences: F1: $a \rightarrow b$ F2: a G: b The final formula for deduction: (F1 \land F2) \rightarrow G, that is: ($(a \rightarrow b) \land a$) $\rightarrow b$	If Asha is elected VP then Rajat is chosen as G-Sec and Bharati is chosen as Treasurer. Rajat is not chosen as G-Sec. Therefore Asha is not elected VP.	If Asha is elected VP then Rajat is chosen as GSec and Bharati is chosen as Treasurer. Rajat is chosen as G-Sec. Therefore Asha is elected VP.

More E	xamples	Methods for Deduction in Propositional Logic
If Asha is elected VP then Rajat is chosen as G-See or Bhanati is chosen as Tressurer. Rajat is not chosen as G-Sec. Therefore if Asha is elected as VP then Bhanati is chosen as Treasurer.	If Asha is elected VP then either Rajat is chosen as GSec or Bharati is chosen as Treasurer but not both. Rajat is not chosen as G-Sec. Therefore if Asha is elected as VP then Bharati is chosen as Treasurer	Interpretation of a Formula Valid, non-valid, Satisfiable, Unsatisfiable Decidable but NP-Hard Truth Table Method Faster Methods for validity checking:- Tree Method Data Structures: Binary Decision Diagrams Symbolic Method: Natural Deduction Soundness and Completeness of a Method

Methods for Deduction	on in Propositional Logic	Insufficiency of Propositional Logic
Interpretation of a Formula Valid, non-valid, Satisfiable, Unsatisfiable Decidable but NP-Hard Truth Table Method Faster Methods for validity checking:- Tree Method Data Structures: Binary Decision Diagrams Symbolic Method: Natural Deduction Soundness and Completeness of a Method	$\begin{array}{l} \textbf{NATURAL DEDUCTION:}\\ \textbf{Modus Ponens:}\\ (a \rightarrow b), a :- therefore b\\ \textbf{Modus Tollens:}\\ (a \rightarrow b), -b :- therefore ~a\\ \textbf{Hypothetical Syllogism:}\\ (a \rightarrow b), (b \rightarrow c):- therefore (a \rightarrow c)\\ \textbf{Disjunctive Syllogism:}\\ (a \lor b), (b \rightarrow c):- therefore b\\ \textbf{Constructive Dilemma:}\\ (a \rightarrow b), A (c \rightarrow d), (a \lor c) :- therefore (b \lor d)\\ \textbf{Destructive Dilemma:}\\ (a \rightarrow b), A (c \rightarrow d), (-b \lor c) :- therefore (-a \lor -c)\\ \textbf{Simplification:} a, b :- therefore a \land b\\ \textbf{Addition:} a :- therefore a \land b\\ \textbf{Addition:} a :- therefore a \lor b\\ \textbf{Natural Deduction is Sound and Complete} \end{array}$	 Wherever Mary goes, so does the lamb. Mary goes to school. So the lamb goes to school. No contractors are dependable. Some engineers are contractors. Therefore some engineers are not dependable. All dancers are graceful. Ayesha is a student. Ayesha is a dancer. Therefore some student is graceful. Every passenger is either in first class or second class. Each passenger is in second class if and only if he or she is not wealthy. Some passengers are wealthy. Not all passengers are wealthy. Therefore some passengers are in second class.

Using Propo	ositional Logic	Better Representation
Representing simple facts It is raining RAINING It is sunny SUNNY It is windy WINDY If it is raining, then it is not sunny RAINING → ¬SUNNY	 If we want to represent Mohit is a man Mohitman Rohit is a man Rohitman Not able to draw any conclusion about similarities between Mohit and Rohit. 	MAN(MOHIT) MAN(ROHIT) • Structure of representation reflects the structure of knowledge itself. • Need to use predicate applied to arguments All man are Mortal - MORTALMAN - Need variable and quantification

Methods for Deduction in First Order Logic

Wherever Mary goes, so does the lamb.
 Mary goes to school. So the lamb goes to school.

2. No contractors are dependable. Some engineers are contractors. Therefore some engineers are not dependable.

 All dancers are graceful. Ayesha is a student. Ayesha is a dancer. Therefore some student is graceful.

4. Every passenger is either in first class or second class. Each passenger is in second class if and only if he or she is not wealthy. Some passengers are wealthy. Not all passengers are wealthy. Therefore some passengers are in second-class. New Additions in Proposition (First Order Logic) Variables, Constants, Predicate Symbols and New Connectors: 3 (there exists), V(for all)

Try Now

Formulating Predicate Logic Statements

New Additions in Proposition (First Order Logic) Variables, Constants, Predicate Symbols and New Connectors: I (there exists), V(for all)

1. Wherever Mary goes, so does the Lamb. Mary goes to School. So the Lamb goes to School.

Predicate: goes(x,y) to represent x goes to y New Connectors: \exists (there exists), V(for all) F1: Vx(goes(Mary, x) \rightarrow goes(Lamb, x)) F2: goes(Mary, School) G: goes(Lamb, School) To prove: (F1 A F2) \rightarrow G) is always true 2. No contractors are dependable. Some engineers are contractors. Therefore some engineers are not dependable.

Predicates: contractor(x), dependable(x), engineer(x)

 $\label{eq:F1:Vx(contractor(x) \rightarrow \sim dependable(x))} \\ [Alternative: \sim \exists x \ (contractor(x) \ \Lambda \ dependable(x))] \\ \end{cases}$

F2: $\exists x (engineer(x) \land contractor(x))$

 $G: \exists x (engineer(x) \ \Lambda \ {\sim} dependable(x))$

To prove: (F1 Λ F2) \rightarrow G) is always true

Domain: D Constant Symbols: M, N, O, P, Variable Symbols: X, y, z, Function Symbols: F(x), g(x,y), H(x,y,z) Predicate Symbols: F(x), g(x,y), r(x,y,z), Connectors: ~, A, V, ->, H, V Terms: Well-formed Formula: Free and Bound Variables: Interpretation, Valid, Non-Valid, Satisfiable, Unsatisfiable

Validity, Satisfiability, Structur

$$\begin{split} F1:&\forall x(goes(Mary, x) \rightarrow goes(Lamb, x))\\ F2:&goes(Mary, School)\\ G:&goes(Lamb, School)\\ To prove:&(F1 \land F2) \rightarrow G) \text{ is always true} \end{split}$$

Is the same as:

$$\begin{split} F1\colon \forall x(www(M,\,x)\to www(L,\,x))\\ F2\colon www(M,\,S)\\ G\colon www(L,\,S)\\ To prove:\,(F1\;\Lambda\;F2)\to G) \text{ is always true} \end{split}$$

- 1. Marcus was a man.
- 2. Marcus was a Pompeian.
- 3. All Pompeians were Romans.
- 4. Caesar was a ruler.
- 5. All Pompeians were either loyal to Caesar or hated him.
- 6. Every one is loyal to someone.
- 7. People only try to assassinate rulers they are not loyal to.
- 8. Marcus tried to assassinate Caesar.

Predicate Logic Example

- 1. Marcus was a man.
- man(Marcus)
- 2. Marcus was a Pompeian. Pompeian(Marcus)
- 3. All Pompeians were Romans. $\forall x: Pompeian(x) \rightarrow Roman(x)$
- 4. Caesar was a ruler. ruler(Caesar)

Predicate Logic Example 5. All Pompeians were either loyal to Caesar or hated him. inclusive-or $\forall x:$ Pompeians $(x) \rightarrow loyalto(x, Caesar) \lor hate(x, Caesar)$ exclusive-or $p \oplus q = (p \land \neg q) \lor (\neg p \land q)$ $\forall x:$ Pompeians $(x) \rightarrow loyalto(x, Caesar) \land \neg hate(x, Caesar)) \lor (\neg loyalto(x, Caesar) \land hate(x, Caesar))$ $\forall x:$ Pompeians $(x) \rightarrow (loyalto(x, Caesar) \land \neg hate(x, Caesar)) \lor (\neg loyalto(x, Caesar) \land hate(x, Caesar))$ 6. Every one is loyal to someone.	First Order Lo • First order logic has sentences with quantifiers which makes it hard for inference • First order inference can be done by – reducing the knowledge base to	 bgic – Inference Was Marcus loyal to Caesar? Using 7 & 8 fact, we can predict Backward chaining man(Marcus) ruler(Caesar)
 ∃y: ∀x: loyalto(x, y) 7. People only try to assassinate rulers they are not loyal to. ∀x: ∀y: person(x) ∧ ruler(y) ∧ tryassassinate(x, y) → ¬loyalto(x, y) 8. Marcus tried to assassinate Caesar. tryassassinate(Marcus, Caesar) 	propositional logic and _ use propositional inference techniques	tryassassinate(Marcus, Caesar) ↓ ∀x: man(x) → person(x) ¬loyalto(Marcus, Caesar)

Inferencing in Predicate Logic

 $\label{eq:constant_symbols: M, N, O, P, Variable Symbols: x,y,z,.... Function Symbols: F(x), G(x,y), H(x,y,z) Predicate Symbols: p(x), q(x,y), r(x,y,z), Connectors: <math>\sim$, A, V, \rightarrow , H, V

Terms: Well-formed Formula: Free and Bound Variables: Interpretation, Valid, Non-Valid, Satisfiable, Unsatisfiable What is an Interpretation? Assign a domain set D, map constants, functions, predicates suitably. The formula will now have a truth value Example: F1: $\forall x(g(M, x) \rightarrow g(L, x))$ F2: g(M, S)G: g(L, S)Interpretation 1: D = {Akash, Baby, Home, Play, Ratan, Swim}, etc., Interpretation 2: D = Set of Integers, etc., How many interpretations can there be?

To prove Validity, means (F1 Λ F2) \rightarrow G) is true under all interpretations To prove Satisfiability means (F1 Λ F2) \rightarrow G) is true under at least one interpretation

Predicate and its Limitations

Russell's Paradox
(The barber shaves all those who do not shave
themselves. Does the barber shave himself?)
 There is a single barber in town.
 Those and only those who do not shave themselves are shaved by the barber.
Who shaves the barber?
Checking Validity of First order logic is undecidable
but partially decidable (semi- decidable) {Robinson's
Method of Resolution Refutation}
Higher order predicate logic - can quantify
symbols in addition to quantifying variables.
$\forall p((p(0) \land (\forall x(p(x) \rightarrow p(S(x))) \rightarrow \forall y(p(y))))$
$\operatorname{P}(\operatorname{P}(0) \to (\operatorname{Tr}(\operatorname{P}(x)) \to \operatorname{P}(\operatorname{D}(x))) \to \operatorname{Tr}(\operatorname{P}(0)))$

