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Module 4:  Logic and Deduction

• PART 4.1 : Logical Agents 

• PART 4.2 : Propositional logic

• PART 4.3 : Predicate Logic 
– Propositional Logic to Predicate Logic
– Predicate Logic Fundamentals

• PART 4.4 : Deduction & Reasoning Tasks  
– Theorem Proving

• PART 4.5 : Inference By Forward & Backward  Chaining
– Representing knowledge using Prolog 

• PART 4.6 : Inferencing By Resolution Refutation

• PART 4.7: Reduction to satisfiability problem : SAT Solver 

Logical Reasoning with Other Fun Things

• Facts

• Rules 
– grandfather, grandmother, 

– maternalgrandfather, maternalgrandmother , 

• Query :
– maternalgranduncle 

• Who is the maternal great uncle of Freya?
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We need that a social media platform to suggests Freya to post a picture of Fergus
on the Maternal-Great-Uncle day

Logical Reasoning with Other Fun Things

• grandfather, grandmother, 
maternalgrandfather, maternalgrandmother , 
maternalgranduncle

• father( x, z ), father( z, y ) ⇒ grandfather( x, y )
• father( x, z ), mother( z, y ) ⇒ grandmother( x, y )

• mother( x, z ), father( z, y ) 
⇒ maternalgrandfather( x, y )

• mother( x, z ), mother( z, y ) 
⇒ maternalgrandmother( x, y )

• maternalgrandmother( x, z ), mother( z, p ), son( p,y ) ⇒ maternalgreatuncle( x, y )

• Who is the maternal great uncle of Freya?

• maternalgrandmother( Freya, Charlotte ), 
mother( Charlotte, Lindsey ), son( Lindsey, 
Fergus ) ⇒ maternalgreatuncle( Freya, Fergus )
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Complexity of Representation What is reasoning 

• Manipulation of symbols 

encoding propositions to produce 

represenations of new 

propositions 

• Benefits of Reasoning

– Given
• Patient X allergic to medication M

• Anyone allergic to medication M is 
also allergic to medication M’

– Reasoning helps us derive
• Patient X is allergic to medication M’

Reasoning Tasks: Modeling and Deduction 

• Model finding

– KB = background knowledge

– S = description of problem

– Show (KB  Ʌ S) is satisfiable

– A kind of constraint satisfaction

• Deduction

– S = question

– Prove that KB |= S

– Two approaches:

• Rules to derive new formulas from old (inference)

• Show (KB Ʌ ¬ S) is unsatisfiable
– Proof by Contradiction / Resolution 

Deduction : Term 

• DEDUCTION
– Commonly associated with formal logic

– Involves reasoning from known premises to a conclusion

– The conclusions reached are inevitable, certain, inescapable

• Validity / Tautology  : 
– A sentence is valid if it is true in all models. E.g., P1,2 ⋁ ¬ P1,2 is always true

• Deduction Theorem:
– For any sentences # and $, # ⊨ $ if and only if the sentence (#⟹ $) is valid

• If we prove (#⟹ $) is equivalent to True, then entailment is proved
• Satisfiability: A sentence is satisfiable if it is true in some model. 

– S1 entails S2 if wherever S1 is true S2 is also true
• Unsatisfiable: If a sentence is false in all models. 

– E.g., P1,2 ⋀ ¬ P1,2 is always false
• Boolean satisfiability problem (SAT) : mid-1990’s

– The problem of determining the satisfiability of sentences in  propositional logic
– given a formula, to check whether it is satisfiable. 
– importance in mantheoretical computer science, complexity theory, algorithmics, cryptography and AI



Examples: Satisfiable, UnSatisfiable  &Valid

a) P → Q
b) R → ¬ R

c) S ∧ (W ∧ ¬S)

d) T ∨ ¬T

e) X → X

a) Satisfiable 

b) Satisfiable 

c) Unsatisfiable 

d) Valid /Tautology 

e) Tautology   

Recall: BNF grammar of sentences 

Notation

• ⇒
• ⊃
• →
• ⊦ Proves: S1⊦ie S2 if `ie’ algorithm says `S2’ from S1

– ie : inference engine 

• ⊨  Entails: S1 |= S2 if wherever S1 is true S2 is also true

• Sound   ⊦ → ⊨
– nothing but the truth

• Complete ⊨→ ⊦
– all truth

Implication (syntactic symbol)

Normal Forms

• Several ways of representing the same logical statement.
– They are logically equivalent. e.g.

• P →Q 

• ¬P ∨Q   or ¬(P ∧ ¬Q)

• The convention for standardizing the representation of formulas is called a canonical
or normal form.

• conjunctive normal form (CNF)
– (¬P ∨ Q) ∧ (S ∨T) ∧ R

• disjunctive normal form (DNF)
– (¬P ∧ S ∧ R)∨ (¬P ∧T ∧ R) ∨ (Q ∧ S ∧ R)∨ (Q ∧T ∧ R)

• Given an arbitrary database of propositional formulas, it is possible to generate an 
equivalent database in CNF (or DNF).



Special Syntactic Forms

• General Form:

– ((q∧¬ r) → s)) ∧ ¬ (s ∧ t)

• Conjunction Normal Form (CNF)

– ( ¬q ∨ r ∨ s ) ∧ ( ¬s ∨ ¬t)

– Set notation: { ( ¬ q, r, s ), ( ¬s, ¬ t) }

– empty clause () = false

• Binary clauses: 1 or 2 literals per clause

– ( ¬ q ∨ r) ( ¬s ∨ ¬ t)

• Horn clauses: 0 or 1 positive literal per clause

– ( ¬ q ∨ ¬ r ∨ s ) ( ¬ s ∨ ¬t)

– (q∧r) → s (s∧t) → false

Inference Enging

• Inference engine performs 2 major tasks: 

1. Examines existing facts and rules and adds new facts when possible 

2. Decides the order in which inferences are made. 

• Inference rules for propositional logic apply to FOL as well

– Modus Ponens, And-Introduction, And-Elimination, …

• New (sound) inference rules for use with quantifiers: 

– Universal elimination

– Existential introduction

– Existential elimination

– Generalized Modus Ponens (GMP)
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Propositional Logic: Inference

Inference: 

A mechanical process for computing new sentences

1. Backward & Forward Chaining

2. Resolution (Proof by Contradiction)

3. SAT

1. Davis Putnam

2. WalkSat

Inference Rules 

• Inference rules that can be applied to derive a proof
– a chain of conclusions that leads to the desired goal. 

• Inference Rules: 
– Modus Ponens (Latin for mode that affirms) and is written

• if (WumpusAhead ∧WumpusAlive) ⇒ Shoot and (WumpusAhead ∧ WumpusAlive) are 

given, then Shoot can be inferred.

– And-Elimination, says that, from a conjunction, any of the conjuncts can be inferred :
• from (WumpusAhead ∧ WumpusAlive), WumpusAlive can be inferred.

– Resolution Technique : 
• assumes sentences are in conjunctive normal  form (CNF) – conjunction of clauses, 
• e.g. (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)



Inference Rules

• All Logical Equivalence rules can be used as inference rules

Propositional Logic (PL) Inference – Theorem Proving

• Using Logical equivalence ($⟹ &) ≡ ¬ $ ⋁ & and Deductive theorem . 

• For any sentences $ and &, $ ⊨ & if and only if the sentence ($ ⋀ ¬&) is unsatisfiable

• This is Proof by Refutation or Proof by Contradiction

• Example: Given our simple KB of Wumpus World

– R1: ¬ P1,1

– R2: B1,1⟺ (P1,2 ⋁ P2,1) 

– R3: B2,1⟺ (P1,1 ⋁ P2,2 ⋁ P3,1 ) 

– R4: ¬ B1,1

– R5: B2,1

• Query: ¬ P1,2

• Can we prove if this sentence be entailed 

from KB using inference rules?

R2: B1,1⟺ (P1,2 ⋁ P2,1)

Apply Biconditional Elimination
R6: (B1,1⟹ (P1,2 ⋁ P2,1)) ⋀ ((P1,2 ⋁ P2,1) ⟹ B1,1) 

Apply And-Elimination to R6 to obtain
R7: ((P1,2 ⋁ P2,1) ⟹ B1,1) 

Logical equivalence for contrapositives gives
R8: (¬ B1,1⟹ ¬ (P1,2 ⋁ P2,1))

Apply Modus Ponens with R8 and R4 to obtain
R9: ¬ (P1,2 ⋁ P2,1) 

Finally, using De Morgan’s rule
R10 : ¬ P1,2 ⋀ ¬ P2,1

PL Inference – Theorem Proving

• This proof can be efficiently computed using search algorithms we discussed earlier.

• We need to define the proof problem as
– Initial State: the initial knowledge base

– Actions: all inference rules that could match the sentences with  the top half of inference rule

– Result: the bottom half of inference rule

– Goal: The state containing the query sentence

– In many practical cases, searching a proof can be more efficient  because the proof can ignore 
irrelevant propositions

• In many practical cases, searching a proof can be more efficient  because the proof 
can ignore irrelevant propositions

Inference 1: Forward/Backward Chaining

• Forward Chaining: 

– Based on rule of modus ponens

– If know P1, …, Pn & know (P1 ∧... ∧Pn ) → Q 

– Then can conclude Q

• Backward Chaining: search

– start from the query and go backwards

• Is it sound ?  

– FC R BCR

• Is is complete  ?

– FC R BCR



Two referencing methods

• Objective is to find a path through a problem space from 

the initial to the final one.

• Two directions to go and find the answer: 

• Forward chaining : also called data driven.
– It starts with the facts, and sees what rules apply.

– to reason forward, the left sides(pre conditions) are 
matched against the current state and the right 
sides(the results) are used to generate new nodes 

until the goal is reached.

• Backward chaining : also called goal driven.
– It starts with something to find out, and looks for 

rules that will help in answering it.

– To reason backwards, the right sides are matched 

against the current node and the left sides are used to 
generate new nodes.
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Forward v/s Backward Reasoning

• Reason forward from the initial states : 
– Begin building a tree of move sequences that might be solution  by starting with the initial 

configuration(s) at the root of the tree. 

– Generate the next level of tree by finding all the rules whose left sides match the root node and use 

the right sides to create the new configurations. 

– Generate each node by taking each node generated at the previous level and applying to it all of the 

rules whose left sides match it. 

• Reason backward from the goal states : 
– Begin building a tree of move sequences that might be solution  by starting with the goal 

configuration(s) at the root of the tree. 

– Generate the next level of tree by finding all the rules whose right sides match the root node and 
use the left sides to create the new configurations. 

– Generate each node by taking each node generated at the previous level and applying to it all of the 
rules whose right sides match it. Continue. This is also called Goal-Directed Reasoning.

Problem: Does situation Z exists or not ?

Forward Chaining:
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Backward Chaining

• With this inference method the system starts with what it wants to prove

– that situation Z exists, and only executes rules that are relavent to establishing it.
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Whether to choose forward or backward reasoning :

• Are there more possible start states or goal states? 
– We would like to go from smaller set of states to larger set of states.

• In which direction is the branching factor (the average number of nodes that can 
be reached directly from a single node) greater? 
– We would like to proceed in the direction with the lower branching factor.

• Will the program be asked to justify its reasoning process to the user? 
– It so, it is important to proceed in the direction that corresponds more closely with the 

way user will think.

• What kind of event is going to trigger a problem-solving episode? 
– If it is the arrival of a new fact , forward reasoning should be used. If it a query to which 

response is desired, use backward reasoning.

Quiz 

• Forward v/s Backward Reasoning

– Home to unknown place example.

– Patients example of diagnosis

– MYCIN

– Prolog 

– Where are my keys?  

• Bidirectional Search ( The two searches must pass each other)

• Forward Rules : which encode knowledge about how to respond to 

certain input configurations.

• Backward Rules : which encode knowledge about how to achieve 

particular goals.

Forward v/s Backward Reasoning

• Forward –Chaining Rule Systems

– data-driven

– Automatic, unconscious processing

– E.g., object recognition, routine decisions

– May do lots of work that is irrelevant to the goal

• Backward-Chaining Rule Systems

– goal-driven, appropriate for problem-solving
– PROLOG is an example of this.
– These are good for goal-directed problem solving.
– Hence Prolog & MYCIN are examples of the same.

• Patients example of diagnosis.

– In some systems ,this is only possible in reversible rules. 

Question Answering
PROLOG:

• Only Horn sentences are acceptable

• The occur-check is omitted from the unification: unsound

test ¬ P(x, x) 

P(x, f(x))

• Backward chaining with depth-first search: incomplete

P(x, y) ¬ Q(x, y) 
P(x, x)
Q(x, y) ¬ Q(y, x) 
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Clause 

• Term
– The set of terms of FOL is the least set satisfying these conditions:

• every variable is a term
• if tl . . . . . tn are terms, and f is a function symbol of arity n, then f(tl . . . . . tn) is a term

• Formula
– The set of formulas of FOL is the least set satisfying these constraints:

• if tl ....tn are terms, and P is a predicate symbol of arity n, then P(t1 . . . . . tn) is a formula;
• if t1 and t2 are terms, then tl=t2 is a formula;
• if α and β are formulas, and x is a variable, then ¬α, α \/ β, α /\ β, x α, and Exists α, are 

formulas.
• Atomic Formula

– Formulas of first two types above
• Sentence

– Any formula with no free variables 32

Completeness of GMP
• Generalized Modus Ponens (GMP)

– using forward or backward chaining is  complete 
for KBs that contain only Horn clauses

• It is not complete for simple KBs that 
contain non-Horn clauses

• The following entail that S(A) is true:
("x) P(x) ® Q(x)

("x) ¬P(x) ® R(x)

("x) Q(x) ® S(x)

("x) R(x) ® S(x)

• Which one is not a Horn clause ??
– If we want to conclude S(A), with GMP we 

cannot, since the second one is not a Horn clause

– It is equivalent to P(x) Ú R(x)

• Literal

– Atomic formula or its negation

• Clause

– A finite set of literals

• A clause (i.e., a disjunction of literals) 

• A Horn clause is a clause containing at 
most one positive literal.

• A definite clause contains exactly one 
positive literal.

• Examples of a Horn Clause

– [¬Child, ¬Mail, Boy]

• Not a Horn Clause

– [Rain, Sleet, Snow]
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Automating FOL inference
with resolution

• Resolution Technique :  

– assumes sentences are in conjunctive normal  form (CNF) – conjunction of 
clauses

• Resolution subsumes Modus Ponens

• A→B,  A |= B
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Resolution in Propositional Logic

• Resolution is a sound and complete inference procedure for FOL
• Reminder: Resolution rule for propositional logic:

– P1 Ú P2 Ú ... Ú Pn

– ¬P1 Ú Q2 Ú ... Ú Qm

– Resolvent: P2 Ú ... Ú Pn Ú Q2 Ú ... Ú Qm

• Examples
– P and ¬ P Ú Q : 

– derive Q (Modus Ponens)
– (¬ P Ú Q) and (¬ Q Ú R) : derive ¬ P Ú R
– P and ¬ P : derive False [contradiction!]
– (P Ú Q) and (¬ P Ú ¬ Q) : derive True

Resolution Refutation for Propositional Logic

To prove validity of

F = ((F1 Ʌ F2 Ʌ … Ʌ Fn) → G)

we shall attempt to prove that

~F = (F1 Ʌ F2 Ʌ … Ʌ Fn Ʌ ~G)

is unsatisfiable

Steps for Proof by Resolution

Refutation:

1. Convert of Clausal Form 
/Conjunctive Normal Form 

(CNF, Product of Sums).

2. Generate new clauses using the 

resolution rule.

3. At the end, either False will be 
derived if the formula ~F is 

unsatisfiable implying F is 
valid.

If Asha is elected VP then Rajat is chosen as 

GSec and Bharati is chosen as Treasurer. 
Rajat is not chosen as G-Sec. Therefore 
Asha is not elected VP.

F1: (a → (b Ʌ c)) = (~a V b) Ʌ (~a V c)

F2: ~b, G: ~a, ~G: a 

Resolution Rule: Let C1 = a V b and C2 = ~a V c

then a new clause C3 = b V c can be derived.

(Proof by showing that ((C1 Ʌ C2) → C3) is a valid formula).

To prove unsatisfiability use the Resolution Rule repeatedly to 
reach a situation where we have two contradictory clauses of the 
form C1 = a and C2 = ~a from which False can be derived.

If the propositional formula is satisfiable then we will not reach a 
contradiction and eventually no new clauses will be derivable.

For propositional logic the procedure terminates.

Resolution Rule is Sound and Complete

Clauses of Clause Form:
~F= (C1 Ʌ C2 Ʌ C3 Ʌ C4)

where:    C1: (~a V b)
C2: (~a V c)
C3: ~b
C4: a

To prove that ~F is False

Applying Resolution Refutation for Propositional Logic

Resolution Rule: 
Let C1 = a V b and C2 = ~a V c

then a new clause C3 = b V c can be derived.

(Proof by showing that ((C1 Ʌ C2) → C3) is 
a valid formula).

To prove unsatisfiability use the Resolution 

Rule repeatedly to reach a situation where we 
have two contradictory clauses of the form 
C1 = a and C2 = ~a from which False can be 

derived.

If the propositional formula is satisfiable then 
we will not reach a contradiction and 

eventually no new clauses will be derivable.

For propositional logic the procedure 
terminates.

Resolution Rule is Sound and Complete

If Asha is elected VP then Rajat is chosen as G-Sec and 

Bharati is chosen as Treasurer. Rajat is not chosen as G-Sec. 
Therefore Asha is not elected VP.

F1: (a → (b Ʌ c)) = (~a V b) Ʌ (~a V c)

F2: ~b

G: ~a

~G: a 

Clauses of Clause Form: ~F
= (C1 Ʌ C2 Ʌ C3 Ʌ C4)
where:    C1: (~a V b)

C2: (~a V c)
C3: ~b
C4: a

To prove that ~F is False

New Clauses Derived

C5: ~a (Using C1 and C3)
C6: False (using C4 and C5)

Let C1 = a V b and C2 = ~a V c

then a new clause C3 = b V c can be derived.

(Proof by showing that ((C1 Ʌ C2) → C3) is 
a valid formula).

To prove unsatisfiability use the Resolution 
Rule repeatedly to reach a situation where we 

have two contradictory clauses of the form 
C1 = a and C2 = ~a from which False can be 
derived.

If the propositional formula is satisfiable then 
we will not reach a contradiction and 
eventually no new clauses will be derivable.

For propositional logic the procedure 
terminates.

Resolution Rule is Sound and Complete

Rajesh either took the bus or came by cycle to class. If he 

came by cycle or walked to class he arrived late. Rajesh did 
not arrive late. Therefore he took the bus to class.

Applying Resolution Refutation for Propositional Logic
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Resolution in first-order logic

• Given sentences
P1 Ú ... Ú Pn

Q1 Ú ... Ú Qm

• in conjunctive normal form (CNF):
– each Pi and Qi is a literal, i.e., a positive or negated predicate symbol with its terms, 

• if Pj and ¬Qk unify with substitution list θ, then derive the resolvent sentence:
subst(θ, P1 Ú... Ú Pj-1 Ú Pj+1 ... Pn Ú Q1 Ú …Qk-1 Ú Qk+1 Ú... Ú Qm)

• Example
– from clause P(x, f(a)) Ú P(x, f(y)) Ú Q(y) 
– and clause ¬P(z, f(a)) Ú ¬Q(z)
– derive resolvent P(z, f(y)) Ú Q(y) Ú ¬Q(z)
– using θ = {x/z} 
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A resolution proof tree

Resolution refutation

• If Will goes, Jane will go

• ~W V J

• If doesn’t go, Jane will still go

• W V J

• Will Jane go?

• |= J?

J ∨ J =J

Don’t need to use other equivalences if we use 

resolution in refutation style

~J ~W
~W ∨ J
W ∨ J J
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Resolution refutation

• Given a consistent set of axioms KB and goal sentence Q, show that KB |= Q
• Proof by contradiction: Add ¬Q to KB and try to prove false.

i.e., (KB |- Q) ↔ (KB Ú ¬Q |- False) 

• Resolution is refutation complete: it can establish that a given sentence Q is 
entailed by KB, but can’t (in general) be used to generate all logical consequences 
of a set of sentences

• Also, it cannot be used to prove that Q is not entailed by KB.
• Resolution won’t always give an answer since entailment is only semidecidable

– And you can’t just run two proofs in parallel, one trying to prove Q and the other trying to prove 
¬Q, since KB might not entail either one



Resolution Refutation for Predicate Logic
Given a formula F which we wish to check for 

validity, we first check if there are any free variables. 

We then quantify all free variables universally.

Create F’ = ~F and check for unsatisfiability of F’
STEPS:

Conversion to Clausal (CNF) Form:

• Handling of Variables and Quantifiers, Ground 

Instances

Applying the Resolution Rule:

• Concept of Unification

• Principle of Most General Unifier (mgu)

• Repeated application of Resolution Rule using mgu

CONVERSION TO CLAUSAL FORM IN PREDICATE LOGIC
1. Remove implications and other Boolean symbols converting to 
equivalent forms using ~, V, Ʌ
2. Move negates (~) inwards as close as possible
3. Standardize (Rename) variables to make them unambiguous
4. Remove Existential Quantifiers by an appropriate new function 
/constant symbol taking into account the variables dependent on the 
quantifier (Skolemization)
5. Drop Universal Quantifiers
6. Distribute V over Ʌ and convert to CNF

F1: Vx(goes(Mary, x) → goes(Lamb, x))
F2: goes(Mary, School)
G: goes(Lamb, School)
To prove: (F1 Ʌ F2) → G) is valid

Resolution Refutation for Predicate Logic
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We need answers to the following questions
• How to convert FOL sentences to conjunctive normal form (a.k.a. CNF, clause form): 

– normalization and skolemization
• How to unify two argument lists, i.e., how to find their most general unifier (mgu) q: 

– unification
• How to determine which two clauses in KB should be resolved next (among all 

resolvable pairs of clauses) :

– resolution (search) strategy
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Converting to CNF
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Converting sentences to CNF

1. (a) Eliminate all ↔ connectives 

(P ↔ Q) Þ ((P ® Q) ^ (Q ® P)) 
(b) Eliminate all ® connectives 

(P ® Q) Þ (¬P Ú Q) 

2. Reduce the scope of each negation symbol to a single predicate 

¬¬P Þ P
¬(P Ú Q) Þ ¬P Ù ¬Q
¬(P Ù Q) Þ ¬P Ú ¬Q
¬("x)P Þ ($x)¬P
¬($x)P Þ ("x)¬P 

3. Standardize variables: rename all variables so that each quantifier has its own unique variable name

("x: P(x)) Ú ($x: Q(x)) º ("x: P(x)) Ú ($y: Q(y))



49

Converting sentences to clausal form 
Skolem constants and functions

4.  Move all quantifiers to the left without changing their relative order.

("x: P(x)) Ú ($y: Q(y)) º "x: $y: (P(x) Ú (Q(y))
Eliminate existential quantification $ by introducing Skolem constants/functions (Skolemization).

($x)P(x) Þ P(c) 

c is a Skolem constant (a brand-new constant symbol that is not used in any other sentence)

("x)($y)P(x,y) Þ ("x)P(x, f(x))

since $ is within the scope of a universally quantified variable, use a Skolem function f to construct 
a new value that depends on the universally quantified variable

f must be a brand-new function name not occurring in any other sentence in the KB. 

E.g., ("x)($y)loves(x,y) Þ ("x)loves(x,f(x)) 

In this case, f(x) specifies the person that x loves
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Converting sentences to clausal form

5. Remove universal quantifiers by (1) moving them all to the left end; (2) making the 
scope of each the entire sentence; and (3) dropping the “prefix” part
Ex: ("x)P(x) Þ P(x)

6. Put into conjunctive normal form (conjunction of disjunctions) using distributive 
and associative laws
(P Ù Q) Ú R Þ (P Ú R) Ù (Q Ú R)

(P Ú Q) Ú R Þ (P Ú Q Ú R)

7. Split conjuncts into separate clauses

8. Standardize variables so each clause contains only variable names that do not occur 
in any other clause

Exercise : Conversion to Clausal Form

1. Remove implications and other 
Boolean symbols converting to 
equivalent forms using ~, V, Ʌ
2. Move negates (~) inwards as 
close as possible
3. Standardize (Rename) variables 
to make them unambiguous
4. Remove Existential Quantifiers 
by an appropriate new function 
/constant symbol taking into 
account the variables dependent on 
the quantifier (Skolemization)
5. Drop Universal Quantifiers
6. Distribute V over Ʌ and convert 
to CNF

∀x(∀y(student(y) → likes(x, y)) →(Ǝz(likes(z,x)))

Exercise :Converting sentences to CNF

1. ("x)(P(x) ® (("y)(P(y) ® P(f(x,y))) Ù ¬("y)(Q(x,y) ® P(y)))) 

2. Anyone who likes all animals is loved by someone:
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Solution: Example 1 CNF
("x)(P(x) ® (("y)(P(y) ® P(f(x,y))) Ù ¬("y)(Q(x,y) ®

P(y))))

1. Eliminate ®
("x)(¬P(x) Ú (("y)(¬P(y) Ú P(f(x,y))) Ù ¬("y)(¬Q(x,y) Ú P(y)))) 

2. Reduce scope of negation
("x)(¬P(x) Ú (("y)(¬P(y) Ú P(f(x,y))) Ù($y)(Q(x,y) Ù ¬P(y)))) 

3. Standardize variables
("x)(¬P(x) Ú (("y)(¬P(y) Ú P(f(x,y))) Ù($z)(Q(x,z) Ù ¬P(z)))) 

4. Eliminate existential quantification
("x)(¬P(x) Ú(("y)(¬P(y) Ú P(f(x,y))) Ù(Q(x,g(x)) Ù ¬P(g(x))))) 

5. Drop universal quantification symbols
(¬P(x) Ú ((¬P(y) Ú P(f(x,y))) Ù(Q(x,g(x)) Ù ¬P(g(x))))) 

6. Convert to conjunction of disjunctions
(¬P(x) Ú ¬P(y) Ú P(f(x,y))) Ù (¬P(x) Ú Q(x,g(x))) Ù

(¬P(x) Ú ¬P(g(x))) 

7. Create separate clauses
¬P(x) Ú ¬P(y) Ú P(f(x,y)) 

¬P(x) Ú Q(x,g(x)) 

¬P(x) Ú ¬P(g(x)) 

8. Standardize variables
¬P(x) Ú ¬P(y) Ú P(f(x,y)) 

¬P(z) Ú Q(z,g(z)) 

¬P(w) Ú ¬P(g(w))

Solution Example 2 : CNF

Original sentence:

Anyone who likes all animals is loved by someone:
"x ["y Animal(y) Þ Likes(x,y)] Þ [$y Loves(y,x)]

1. Eliminate biconditionals and implications
"x [¬"y ¬Animal(y) Ú Likess(x,y)] Ú [$y Loves(y,x)]

2. Move ¬ inwards: 
Recall: ¬"x p ≡ $x ¬p,  ¬ $x p ≡ "x ¬p

"x [$y ¬(¬Animal(y) Ú Likes(x,y))] Ú [$y Loves(y,x)] 
"x [$y ¬¬Animal(y) Ù ¬Likes(x,y)] Ú [$y Loves(y,x)] 

"x [$y Animal(y) Ù ¬Likes(x,y)] Ú [$y Loves(y,x)] 

Either there is some animal that x doesn’t like if that is not the case then someone loves x

Solution Example 2 : CNF cont.

3. Standardize variables: each quantifier should use a different one
"x [$y Animal(y) Ù ¬Likes(x,y)] Ú [$z Loves(z,x)] 

4. Skolemize: 
"x [Animal(A) Ù ¬Likes(x,A)] Ú Loves(B,x)

Everybody fails to love a particular animal A or is loved by a particular person B

Animal(cat) , Likes(marry, cat), Loves(john, marry)

Likes(cathy, cat), Loves(Tom, cathy)

a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified 
variables:

"x [Animal(F(x)) Ù ¬Loves(x,F(x))] Ú Loves(G(x),x)

(reason: animal y could be a different animal for each x.)

Solution Example 2 : CNF cont.

5. Drop universal quantifiers:
[Animal(F(x)) Ù ¬Loves(x,F(x))]  Ú Loves(G(x),x)

(all remaining variables assumed to be universally quantified)

6. Distribute Ú over Ù :

[Animal(F(x)) Ú Loves(G(x),x)] Ù [¬Loves(x,F(x)) Ú Loves(G(x),x)]

Original sentence is now in CNF form – can apply same ideas to all sentences in 
KB to convert into CNF

Also need to include negated query. Then use resolution to attempt to  derive the 
empty clause  which show that the query is entailed by the KB
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Unification
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Unification

• Unify is a linear-time algorithm that returns

the most general unifier (mgu), i.e., the
shortest-length substitution list that makes
the two literals match.

• In general, there is not a unique minimum-
length substitution list, but unify returns one
of minimum length

• A variable can never be replaced by a term
containing that variable

Example: x/f(x) is illegal.

• This “occurs check” should be done in the
above pseudo-code before making the

recursive calls

• Unification is a “pattern-matching”
procedure 

– Takes two atomic sentences, called literals, as 
input

– Returns “Failure” if they do not match and a 
substitution list, θ, if they do

• That is, unify(p,q) = θ means subst(θ, p) = 
subst(θ, q) for two atomic sentences, p and q

• θ is called the most general unifier (mgu) 

• All variables in the given two literals are 
implicitly universally quantified 

• To make literals match, replace (universally 
quantified) variables by terms

59

Unification examples

• Example:

– parents(x, father(x), mother(Bill)) 

– parents(Bill, father(Bill), y)

– {x/Bill, y/mother(Bill)}

• Example:

– parents(x, father(x), mother(Bill))

– parents(Bill, father(y), z)

– {x/Bill, y/Bill, z/mother(Bill)}

• Example:

– parents(x, father(x), mother(Jane))

– parents(Bill, father(y), mother(y))

– Failure

Substitution, Unification, Resolution

Consider clauses:
• C1: ~studies(x,y) V passes(x,y)
• C2: studies(Madan,z)
• C3: ~passes(Chetan, Physics)
• C4: ~passes(w, Mechanics)
What new clauses can we derive by the 
resolution principle?
Ground Clause and a more general clause
Concept of substitution / unification
and the Most General Unifier (mgu)
Resolution Rule for Predicate 
Calculus: Repeated Application of 
Resolution using mgu

Vx(Vy(student(y) → likes(x, y)) →(Ǝz(likes(z,x)))



Exercise : 

F1: Vx(contractor(x) → ~dependable(x))
F2: Ǝx(engineer(x) Ʌ contractor(x))
G: Ǝx(engineer(x) Ʌ ~dependable(x))

F1: Vx(dancer(x) → graceful (x))
F2: student(Ayesha), 
F3: dancer(Ayesha)
G: Ǝx(student (x) Ʌ graceful(x))
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Practice example

• Jack owns a dog. 

• Every dog owner is an animal lover. 

• No animal lover kills an animal. 

• Either Jack or Curiosity killed the cat, who is named Tuna. 

• Did Curiosity kill the cat?
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Example: Did Curiosity kill the cat

• Jack owns a dog. Every dog owner is an animal lover. No animal lover 
kills an animal. Either Jack or Curiosity killed the cat, who is named 
Tuna. Did Curiosity kill the cat?

• These can be represented as follows:

A. ($x) Dog(x) Ù Owns(Jack,x)

B. ("x) (($y) Dog(y) Ù Owns(x, y)) ® AnimalLover(x)

C. ("x) AnimalLover(x) ® (("y) Animal(y) ® ¬Kills(x,y))

D. Kills(Jack,Tuna) Ú Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. ("x) Cat(x) ® Animal(x) 

G. Kills(Curiosity, Tuna) GOAL

Convert to clause form
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A1. (Dog(D)) 

A2. (Owns(Jack,D))

B. (¬Dog(y), ¬Owns(x, y), AnimalLover(x))

C. (¬AnimalLover(a), ¬Animal(b), ¬Kills(a,b))

D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))

E. Cat(Tuna)

F. (¬Cat(z), Animal(z))

• Add the negation of query:
¬G: (¬Kills(Curiosity, Tuna))

D is a skolem constant



The resolution refutation proof 
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R1: ¬G, D, {} (Kills(Jack, Tuna))

R2: R1, C, {a/Jack, b/Tuna} (~AnimalLover(Jack),  

~Animal(Tuna))

R3: R2, B, {x/Jack} (~Dog(y), ~Owns(Jack, y), 

~Animal(Tuna))

R4: R3, A1, {y/D} (~Owns(Jack, D), ~Animal(Tuna))

R5: R4, A2, {} (~Animal(Tuna))

R6: R5, F, {z/Tuna} (~Cat(Tuna))

R7: R6, E, {} FALSE
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• The proof tree
¬G D

C

B

A1

A2

F

A

R1: K(J,T)

R2: ¬AL(J) Ú ¬A(T)

R3: ¬D(y) Ú ¬O(J,y) Ú ¬A(T)

R4: ¬O(J,D), ¬A(T)

R5: ¬A(T)

R6: ¬C(T)

R7: FALSE

{}

{a/J,b/T}

{x/J}

{y/D}

{}

{z/T}

{}

• Basic FOL inference algorithm (satisfiability check).

1. Use Skolemization to eliminate quantifiers

1. Only universal quantifiers remain.

2. Convert to clausal form.

3. Use resolution + unification.

• This algorithm is complete (Gödel 1929).

Logic Programming

• Logic programming is a programming language paradigm in which logical 
assertions are viewed as programs, e.g : PROLOG 

• A PROLOG program is described as a series of logical assertions, each of which 
is a Horn Clause.
– A Horn Clause is a clause that has at most one positive literal. 
– Eg p, ¬ p V q etc are also Horn Clauses.

• The fact that PROLOG programs are composed only of Horn Clauses and not of 
arbitrary logical expressions has two important consequences.

• Because of uniform representation a simple & effective interpreter can be 
written.

• The logic of Horn Clause systems is decidable. 



Logic Programming

• Even PROLOG works on backward reasoning.
• The program is read top to bottom, left to right and search is performed depth-first with backtracking.
• Syntactic difference between the logic and the PROLOG representations : 

– PROLOG interpreter has a fixed control strategy, so assertions in the PROLOG program define a particular search path 
to answer any question.

– Where as Logical assertions define set of answers that they justify, there can be more than one answers, it can be 
forward or backward tracking .

• Control Strategy for PROLOG states that we begin with a problem statement, which is viewed as a goal to 
be proved.

• Look for the assertions that can prove the goal.
• To decide whether a fact or a rule can be applied to the current problem, invoke a standard unification 

procedure.
• Reason backward from that goal until a path is found that terminates with assertions in the program.
• Consider paths using a depth-first search strategy and use backtracking.
• Propagate to the answer by satisfying the conditions.
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Prolog

• A logic programming language based on Horn clauses

– Resolution refutation

– Control strategy: goal-directed and depth-first
• always start from the goal clause

• always use the new resolvent as one of the parent clauses for resolution

• backtracking when the current thread fails

• complete for Horn clause KB

– Support answer extraction (can request single or all answers)

– Orders the clauses and literals within a clause to resolve non-determinism

• Q(a) may match both Q(x) <= P(x) and Q(y) <= R(y)

• A (sub)goal clause may contain more than one literals, i.e., <= P1(a), P2(a)

– Use “closed world” assumption (negation as failure)

• If it fails to derive P(a), then assume ~P(a)

Representation in logic

• ∀ x : pet(x) Λ small (x) à apartment(x)

• ∀ x : cat(x) ⋁ dog(x) à pet(x)

• ∀ x : poodle(x) à dog(x) Λ small(x)

• Poodle(abs)

Representation in PROLOG
• Apartment (x) :- pet(x), small(x)

• Pet (x) :- dog (x)

• Dog (x) :- poodle (x)

• Small(x) :- poodle (x)

• Poodle(abs)
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Syntax and Rule 

• .pl files contain lists of clauses

• Clauses can be either facts or rules

male(bob).
male(harry).
child(bob,harry).
son(X,Y):-

male(X),child(X,Y).

Predicate, arity 1 (male/1)

Terminates a clause

Indicates a rule

“and”

Argument to predicate
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• Rules combine facts to 
increase knowledge of the 
system

son(X,Y):-
male(X),child(X,Y).

• X is a son of Y if X is male 
and X is a child of Y



Questions

• In Prolog the queries are statements 
called directive

• Syntactically, directives are clauses 
with an empty left-hand side.
– Example : ? - grandparent(X, W).

– This query is interpreted as : Who is a 

grandparent of X?

• The result of executing a query is 
either success or failure

– Success, means the goals specified in the query 
holds according to the facts and rules of the 
program.

– Failure, means the goals specified in the query 
does not hold according to the facts and rules 
of the program

• Ask the Prolog virtual machine questions

• Composed at the ?- prompt

• Returns values of bound variables and yes or no

?- son(bob, harry).
yes
?- king(bob, france).
no

• Can bind answers to questions to variables

• Who is bob the son of? (X=harry)

?- son(bob, X).

• Who is male? (X=bob, harry)

?- male(X).

• Is bob the son of someone? (yes)

?- son(bob, _).

• No variables bound in this case!

Backtracking

• How are questions resolved?

?- son(X,harry).

• Recall the rule:

son(X,Y):- male(X),child(X,Y).

• Y is bound to the atom “harry” by the question.

male(X) child(X,Y)
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X=harry
Y=harry

child(harry,harry)?

child(bob,harry)?
X=bob
Y=harry

no

yes - succeeds

Applications

• Intelligent systems

• Complicated knowledge databases

• Natural language processing

• Logic data analysis
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Prolog Exercise : Knowledge Base in FOL

• The law says that it is a crime for an American to sell weapons to hostile 
nations.  The country Nono, an enemy of America, has some missiles, and 
all of its missiles were sold to it by Colonel West, who is American.

• Exercise: Formulate this knowledge in FOL.

Query: Criminal(West)?



Knowledge Base in FOL
The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of
America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
... it is a crime for an American to sell weapons to hostile nations:

American(x) Ù Weapon(y) Ù Sells(x,y,z) Ù Hostile(z) Þ Criminal(x)
Nono … has some missiles, i.e., $x Owns(Nono,x) Ù Missile(x):
Owns(Nono,M1) and Missile(M1)
… all of its missiles were sold to it by Colonel West

Missile(x) Ù Owns(Nono,x) Þ Sells(West,x,Nono)
Missiles are weapons:
Missile(x) Þ Weapon(x)
An enemy of America counts as "hostile“:
Enemy(x,America) Þ Hostile(x)
West, who is American …
American(West)
The country Nono, an enemy of America …
Enemy(Nono,America)

Resolution proof

Logic programming: Prolog

• Program = set of clauses = head :- literal1, … literaln.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
Missile(m1).
Owns(nono,m1). 
Sells(west,X,nono):- Missile(X) Owns(nono,X).
weapon(X):- missile(X).
hostile(X) :- enemy(X,america).
american(west)

Query : criminal(west)?

Query: criminial(X)?

Limitations of Resolution ( Evolution of Natural Deduction)

• The previous method of resolution brings uniformity, everything 

looks the same. Hence at times, it becomes very difficult to pick the 

statement that may be useful in solving the problem.

• As we convert everything into clause form, we loose important 

heuristic information.

• Eg. We believe that all judges who are not crooked are well-

educated

• ¥x : judge(x) À ¬ crooked (x) � educated(x)

• In the clause form it will take the following shape

• ¬ judge (x) V crooked(x) V educated(x)



Natural Deduction

– Another problem with the use of resolution is that people do not think in
resolution.

– Computers are still poor at proving very hard things, hence we need a practical
standpoint. ( focus is on interaction)

– To facilitate it we led to Natural Deduction.

– It describes a blend of techniques, used in combination to solve problems that
are not traceable by any one method alone.

– One common technique is to talk about objects involved in the predicate and not
the predicate itself.

Reduction to satisfiability problem 

• Boolean satisfiability problem (SAT) : mid-1990’s

– given a formula, to check whether it is satisfiable. 

– importance in mantheoretical computer science, complexity theory, 

algorithmics, cryptography and artificial intelligence.

• SAT: Model Finding

• Find assignments to variables that makes a formula true

• The problem of determining the satisfiability of sentences in propositional 

logic

• Why study Satisfiability?

– Canonical NP complete problem.

• several hard problems modeled as SAT

– Tonne of applications

– State-of-the-art solvers superfast

Testing Circuit Equivalence

• Do two circuits compute the same 

function?

• Circuit optimization

• Is there input for which the two 

circuits compute different values?



Testing Circuit Equivalence

• Do two circuits compute the same 

function?

! ≡ "˄#
!′ ≡ ¬ $˅%
$ ≡ ¬"
% ≡ ¬B
Resolution : 
¬(! ≡ !′)

SAT Translation of N-Queens

• At least one queen each column:

(Q11 v Q12 v Q13 v ... v Q18)

(Q21 v Q22 v Q23 v ... v Q28)

…

• No attacks:

(~Q11 v ~Q12)

(~Q11 v ~Q22)

(~Q11 v ~Q21)

...

SAT Translation of Graph Coloring

• A new SAT Variable for var-val pair
– XWA-r, XWA-g , XWA-b , XNT-r…

• Each var has at least 1 value
– XWA-r v XWA-g v XWA-b

• No var has two values
– ~XWA-r v ~XWA-g

– ~XWA-r v ~XWA-b

• Constraints
– ~XWA-r v ~XNT-r

Real-World Reasoning

Tackling inherent computational complexity



Summary 

• Logical agents apply inference to a knowledge base to derive new information and 
make decisions

• Basic concepts of logic:
– Syntax: formal structure of sentences

– Semantics: truth of sentences wrt models

– Entailment: necessary truth of one sentence given another

– Inference: deriving sentences from other sentences

– Soundness: derivations produce only entailed sentences

– Completeness: derivations can produce all entailed sentences

• FC and BC are linear time, complete for Horn clauses

• Resolution is a sound and complete inference method for propositional and first-
order logic

• SAT: Find assignments to variables that makes a formula true

Next : 

• Module 5: AI Planning
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