Artificial Intelligence

Module 4: Logic and Deduction
PART 4.4 : Deduction \& Reasoning Tasks
PART 4.5 : Inference By Forward \& Backward Chaining PART 4.6 : Inferencing By Resolution Refutation PART 4.7 : Reduction to satisfiability problem

Dr. Chandra Prakash

Assistant Professor
Department of Computer Science and Engineering
(Slides adapted from StuartJ. Russell, B Ravindran, Mausam, Dan Klein and Pieter Abbeel, Partha P Chakrabarti, Saikishor Jangiti

Logical Reasoning with Other Fun Things

- Facts
- Rules
- grandfather, grandmother,
- maternalgrandfather, maternalgrandmother,
- Query :
- maternalgranduncle
- Who is the maternal great uncle of Freya?

We need that a social media platform to suggests Freya to post a picture of Fergus on the Maternal-Great-Uncle day

Module 4: Logic and Deduction

- PART 4.1 : Logical Agents
- PART 4.2 : Propositional logic
- PART 4.3 : Predicate Logic
- Propositional Logic to Predicate Logic
- Predicate Logic Fundamentals
- PART 4.4 : Deduction \& Reasoning Tasks

Theorem Proving

- PART 4.5 : Inference By Forward \& Backward Chaining
- Representing knowledge using Prolog
- PART 4.6 : Inferencing By Resolution Refutation
- PART 4.7: Reduction to satisfiability problem : SAT Solver

Logical Reasoning with Other Fun Things

- grandfather, grandmother, maternalgrandfather, maternalgrandmother , maternalgranduncle

- $\operatorname{father}(x, z), \operatorname{father}(z, y) \Rightarrow \operatorname{grandfather}(x, y)$
$\operatorname{father}(x, z), \operatorname{mother}(z, y) \Rightarrow \operatorname{grandmother}(x, y)$
mother (x, z), $\operatorname{father}(z, y)$
\Rightarrow maternalgrandfather (x, y)
mother (x, z), mother (z, y)
\Rightarrow maternalgrandmother (x, y)
- Who is the maternal great uncle of Freya?

- maternalgrandmother(Freya, Charlotte), mother(Charlotte, Lindsey), son(Lindsey, Fergus) \Rightarrow maternalgreatuncle(Freya, Fergus)

Propositional Logic
First Order Logic

What is reasoning

- Manipulation of symbols encoding propositions to produce represenations of new

propositions

- Benefits of Reasoning
- Given
- Patient X allergic to medication M
- Anyone allergic to medication M is also allergic to medication M^{\prime}
- Reasoning helps us derive
- Patient X is allergic to medication M^{\prime}

```
Analogy: arithmetic
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
111^{*}+{ }^{110^{*}} \rightarrow{ }^{\prime \prime}
\]}} \\
\hline & \\
\hline & \\
\hline
\end{tabular} eleven two thirtee
```


Reasoning Tasks: Modeling and Deduction

- Model finding

- $\mathrm{KB}=$ background knowledge
- $\mathrm{S}=$ description of problem
- Show (KB $\wedge S$) is satisfiable
- A kind of constraint satisfaction
- Deduction

- S = question
- Prove that KB $\mid=\mathrm{S}$
- Two approaches:
- Rules to derive new formulas from old (inference)
- Show ($\mathrm{KB} \wedge \neg \mathrm{S}$) is unsatisfiable

Proof by Contradiction / Resolution

Deduction: Term

- DEDUCTION
- Commonly associated with formal logic
- Involves reasoning from known premises to a conclusion
- The conclusions reached are inevitable, certain, inescapable
- Validity / Tautology :
- A sentence is valid if it is true in all models. E.g., $\mathrm{P} 1,2 \mathrm{~V} \neg \mathrm{P} 1,2$ is always true
- Deduction Theorem:
- For any sentences α and $\beta, \alpha \neq \beta$ if and only if the sentence $(\alpha \Rightarrow \beta)$ is valid
- If we prove $(\alpha \Rightarrow \beta)$ is equivalent to True, then entailment is proved
- Satisfiability: A sentence is satisfiable if it is true in some model.
- S1 entails S 2 if wherever S 1 is true S 2 is also true
- Unsatisfiable: If a sentence is false in all models.
- E.g., $\mathrm{P}_{1,2} \wedge \neg \mathrm{P}_{1,2}$ is always false
- Boolean satisfiability problem (SAT) : mid-1990's
- The problem of determining the satisfiability of sentences in propositional logic
- given a formula, to check whether it is satisfiable.
- importance in mantheoretical computer science, complexity theory, algorithmics, cryptography and AI

Commonly associated with formal logic
Commonly associated with formal logic
The conclusions reached are inevitable, certain, inescapable

- Validity / Tautology

斯
the sentence $(\alpha \Rightarrow \beta)$ is vali

- S1 entails S2 if wherever S1 is true S2 is also true
- E.g., $\mathrm{P}_{1,2} \wedge \neg \mathrm{P}_{1,2}$ is always false

Boolean satisfiability problem (SAT) : mid-1990's
The problem of determining the satisfiability of sentences in propositional logic
given a formula, to check whether it is satisfiable.
importance in mantheoretical computer science, complexity theory, algorithmics, cryptography and AI

Examples: Satisfiable, UnSatisfiable \&Valid
a) $\mathrm{P} \rightarrow \mathrm{Q}$
a) Satisfiable
b) $\mathrm{R} \rightarrow \neg \mathrm{R}$
b) Satisfiable
c) $\mathrm{S} \wedge(\mathrm{W} \wedge \neg \mathrm{S})$
c) Unsatisfiable
d) $T \vee \neg T$
d) Valid /Tautology
e) $X \rightarrow X$
e) Tautology

Recall: BNF grammar of sentences

		Connectives and Symbols in decreasing order of operation priority					
Sentence	\rightarrow AtomicSentence \mid ComplexSentence	Connective	Symbols				Read as
AtomicSentence	\rightarrow True \mid False \mid	assertion	P				"p is true"
ComplexSentence	\rightarrow (Sentence) \mid S Sentence $]$	negation	ᄀp	\sim	!	NOT	"p is false"
	Sentence \wedge Sentence	conjunction	p^q		\& 8	AND	"both p and q are true"
	Sentence \vee Sentence	disjunction	Pvq	11	I	OR	"either pis true, or q is true, or both "
	\| Sentence \Rightarrow Sentence Sentence \Leftrightarrow Sentence	implication	$\mathrm{p} \rightarrow \mathrm{q}$	ว	\Rightarrow	if.then	"if p is true, then q is true" " p implies q "
Operator Precedence	: $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$	equivalence	\leftrightarrow	\equiv	\Leftrightarrow	if and only if	"p and q are either both true or both false"

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Normal Forms

- Several ways of representing the same logical statement.

They are logically equivalent. e.g.

$$
\text { - } \mathrm{P} \rightarrow \mathrm{Q}
$$

$$
\text { - } \neg \mathrm{P} \vee \mathrm{Q} \text { or } \neg(\mathrm{P} \wedge-\mathrm{Q})
$$

- The convention for standardizing the representation of formulas is called a canonical or normal form.
- conjunctive normal form (CNF)
$-(\neg P \vee Q) \wedge(S \vee T) \wedge R$
- disjunctive normal form (DNF)
$-(\neg P \wedge S \wedge R) \vee(\neg P \wedge T \wedge R) \vee(Q \wedge S \wedge R) \vee(Q \wedge T \wedge R)$
- Given an arbitrary database of propositional formulas, it is possible to generate an equivalent database in CNF (or DNF).

Special Syntactic Forms

- General Form:

$$
-((\mathrm{q} \wedge \neg \mathrm{r}) \rightarrow \mathrm{s})) \wedge \neg(\mathrm{s} \wedge \mathrm{t})
$$

- Conjunction Normal Form (CNF)
$-(\neg q \vee \mathrm{r} \vee \mathrm{s}) \wedge(\neg \mathrm{s} \vee \neg \mathrm{t})$
- Set notation: $\{(\neg \mathrm{q}, \mathrm{r}, \mathrm{s}),(\neg \mathrm{s}, \neg \mathrm{t})\}$
- empty clause () = false
- Binary clauses: 1 or 2 literals per clause
$-(\neg \mathrm{q} \vee \mathrm{r})(\neg \mathrm{s} \vee \neg \mathrm{t})$
- Horn clauses: 0 or 1 positive literal per clause
$-(\neg \mathrm{q} \vee \neg \mathrm{r} \vee \mathrm{s})(\neg \mathrm{s} \vee \neg \mathrm{t})$
$-(q \wedge r) \rightarrow s(s \wedge t) \rightarrow$ false

Inference Enging

- Inference engine performs 2 major tasks:

1. Examines existing facts and rules and adds new facts when possible
2. Decides the order in which inferences are made.

- Inference rules for propositional logic apply to FOL as well
- Modus Ponens, And-Introduction, And-Elimination, ...
- New (sound) inference rules for use with quantifiers:
- Universal elimination
- Existential introduction
- Existential elimination
- Generalized Modus Ponens (GMP)

Inference Rules

- Inference rules that can be applied to derive a proof
- a chain of conclusions that leads to the desired goal.

- Inference Rules:

- Modus Ponens (Latin for mode that affirms) and is written
\qquad α
- if (WumpusAhead \wedge WumpusAlive) \Rightarrow Shoot and (WumpusAhead \wedge WumpusAlive) are given, then Shoot can be inferred.
- And-Elimination, says that, from a conjunction, any of the conjuncts can be inferred : $\frac{\alpha \wedge \beta}{\alpha}$ - from (WumpusAhead \wedge WumpusAlive), WumpusAlive can be inferred.

Resolution Technique :

- assumes sentences are in conjunctive normal form (CNF) - conjunction of clauses
- e.g. $(\neg \mathrm{B} 1,1 \vee \mathrm{P} 1,2 \vee \mathrm{P} 2,1) \wedge(\neg \mathrm{P} 1,2 \vee \mathrm{~B} 1,1) \wedge(\neg \mathrm{P} 2,1 \vee \mathrm{~B} 1,1)$

Inference Rules

- All Logical Equivalence rules can be used as inference rules

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \quad \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

PL Inference - Theorem Proving

- This proof can be efficiently computed using search algorithms we discussed earlier.
- We need to define the proof problem as
- Initial State: the initial knowledge base
- Actions: all inference rules that could match the sentences with the top half of inference rule
- Result: the bottom half of inference rule
- Goal: The state containing the query sentence

In many practical cases, searching a proof can be more efficient because the proof can ignore irrelevant propositions

- In many practical cases, searching a proof can be more efficient because the proof can ignore irrelevant propositions

Propositional Logic (PL) Inference - Theorem Proving

- Using Logical equivalence $(\alpha \Rightarrow \beta) \equiv \neg \alpha \vee \beta$ and Deductive theorem
- For any sentences α and $\beta, \alpha \vDash \beta$ if and only if the sentence $(\alpha \wedge \neg \beta)$ is unsatisfiabl
- This is Proof by Refutation or Proof by Contradiction
- Example: Given our simple KB of Wumpus World
- R1: $\neg \mathrm{P}_{1,1}$
$-\mathrm{R}_{2}: \mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)$
$-\mathrm{R}_{3}: \mathrm{B}_{2,1} \Leftrightarrow\left(\mathrm{P}_{1,1} \vee \mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}\right)$
$-\mathrm{R}_{4}: \neg \mathrm{B}_{1,1}$
$-\mathrm{R}_{5}: \mathrm{B}_{2,1}$
- Query: $\neg \mathrm{P}_{1,2}$
- Can we prove if this sentence be entailed from KB using inference rules?
$\mathrm{R}_{2}: \mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)$
Apply Biconditional Elimination $\mathrm{R}_{6}:\left(\mathrm{B}_{1,1} \Longrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge\left(\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \Rightarrow \mathrm{B}_{1,1}\right)$
Apply And-Elimination to R6 to obtain $\mathrm{R}_{7}:\left(\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \Rightarrow \mathrm{B}_{1,1}\right)$
Logical equivalence for contrapositives give $\mathrm{R}_{8}:\left(\neg \mathrm{B}_{1,1} \Rightarrow \neg\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right)$
Apply Modus Ponens with R8 and R4 to obtain $\mathrm{R}_{9}: \neg\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)$
Finally, using De Morgan's rule
$\mathrm{R}_{10}: \neg \mathrm{P}_{1,2} \wedge \neg \mathrm{P}_{2,1}$

Inference 1: Forward/Backward Chaining

- Forward Chaining

- Based on rule of modus ponens
- If know $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}} \&$ know $\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \rightarrow \mathrm{Q}$
- Then can conclude Q
- Backward Chaining: search
- start from the query and go backwards
- Is it sound?
$-\mathrm{FC} \nabla \mathrm{BC} \nabla$
- Is is complete ?
- FC $\sqrt{ }$ BCV

Two referencing methods

- Objective is to find a path through a problem space from the initial to the final one
- Two directions to go and find the answer:
- Forward chaining : also called data driven.

It starts with the facts, and sees what rules apply.

- to reason forward, the left sides(pre conditions) are matched against the current state and the right sides(the results) are used to generate new nodes until the goal is reached
- Backward chaining : also called goal driven.

It starts with something to find out, and looks for rules that will help in answering it.
To reason backwards, the right sides are matched against the current node and the left sides are used to generate new nodes.

Forward v/s Backward Reasoning

- Reason forward from the initial states :

Begin building a tree of move sequences that might be solution by starting with the initial configuration(s) at the root of the tree.

- Generate the next level of tree by finding all the rules whose left sides match the root node and use the right sides to create the new configurations
- Generate each node by taking each node generated at the previous level and applying to it all of the rules whose left sides match it.
- Reason backward from the goal states :

Begin building a tree of move sequences that might be solution by starting with the goa configuration(s) at the root of the tree.

- Generate the next level of tree by finding all the rules whose right sides match the root node and use the left sides to create the new configurations.
Generate each node by taking each node generated at the previous level and applying to it all of the rules whose right sides match it. Continue. This is also called Goal-Directed Reasoning.

Forward Chaining:

Problem: Does situation Z exists or not?

Backward Chaining

- With this inference method the system starts with what it wants to prove - that situation Z exists, and only executes rules that are relavent to establishing it.

Whether to choose forward or backward reasoning :

- Are there more possible start states or goal states?
- We would like to go from smaller set of states to larger set of states.
- In which direction is the branching factor (the average number of nodes that can be reached directly from a single node) greater?
- We would like to proceed in the direction with the lower branching factor.
- Will the program be asked to justify its reasoning process to the user?
- It so, it is important to proceed in the direction that corresponds more closely with the way user will think.
- What kind of event is going to trigger a problem-solving episode?
- If it is the arrival of a new fact , forward reasoning should be used. If it a query to which response is desired, use backward reasoning.

Quiz

- Forward v/s Backward Reasoning
- Home to unknown place example.
- Patients example of diagnosis
- MYCIN
- Prolog
- Where are my keys?
- Bidirectional Search (The two searches must pass each other)
- Forward Rules : which encode knowledge about how to respond to certain input configurations.
- Backward Rules : which encode knowledge about how to achieve particular goals.

Forward v/s Backward Reasoning

- Forward -Chaining Rule Systems
- data-driven
- Automatic, unconscious processing
- E.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- Backward-Chaining Rule Systems
- goal-driven, appropriate for problem-solving
- PROLOG is an example of this.
- These are good for goal-directed problem solving.
- Hence Prolog \& MYCIN are examples of the same
- Patients example of diagnosis.

In some systems ,this is only possible in reversible rules.

Clause

- Term
- The set of terms of FOL is the least set satisfying these conditions:
- every variable is a term
- if $t_{1} \ldots t_{n}$ are terms, and f is a function symbol of arity n, then $f\left(t_{1} \ldots . t_{n}\right)$ is a term
- Formula
- The set of formulas of FOL is the least set satisfying these constraints:
- if $\mathrm{t}_{1} \ldots . \mathrm{t}_{\mathrm{n}}$ are terms, and P is a predicate symbol of arity n , then $\mathrm{P}(\mathrm{t} 1 \ldots . \mathrm{tn})$ is a formula
- if t 1 and t 2 are terms, then $\mathrm{t}=\mathrm{t} 2$ is a formula;
- if α and β are formulas, and x is a variable, then $\neg \alpha, \alpha \vee \beta, \alpha \wedge \beta, x \alpha$, and Exists α, are formulas.
- Atomic Formula
- Formulas of first two types above
- Sentence
- Any formula with no free variables

Completeness of GMP

- Literal
- Atomic formula or its negation
- Clause
- A finite set of literals
- A clause (i.e., a disjunction of literals)
- A Horn clause is a clause containing at most one positive literal
- A definite clause contains exactly one positive literal.
- Examples of a Horn Clause $-[\neg$ Child, \neg Mail, Boy $]$
- Not a Horn Clause
- [Rain, Sleet, Snow]
- Generalized Modus Ponens (GMP)
using forward or backward chaining is complete for KBs that contain only Horn clauses
- It is not complete for simple KBs that contain non-Horn clauses
- The following entail that $S(A)$ is true: $(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})$
$(\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{R}(\mathrm{x})$
$(\forall x) Q(x) \rightarrow S(x)$

$$
(\forall x) R(x) \rightarrow S(x)
$$

- Which one is not a Horn clause ??
- If we want to conclude $\mathrm{S}(\mathrm{A})$, with GMP we cannot, since the second one is not a Horn clause
- It is equivalent to $\mathrm{P}(\mathrm{x}) \vee \mathrm{R}(\mathrm{x})$

- Resolution Technique :

- assumes sentences are in conjunctive normal form (CNF) - conjunction of clauses
- Resolution subsumes Modus Ponens
- $\mathrm{A} \rightarrow \mathrm{B}, \mathrm{A} \mid=\mathrm{B}$

$\underbrace{\text { Pos }}_{\text {Pos }}$ Pos

Resolution in Propositional Logic

- Resolution is a sound and complete inference procedure for FOL
- Reminder: Resolution rule for propositional logic:
$-P_{1} \vee P_{2} \vee \ldots \vee P_{n}$
$-\neg P_{1} \vee Q_{2} \vee \ldots \vee Q_{m}$
- Resolvent: $P_{2} \vee \ldots \vee P_{n} \vee Q_{2} \vee \ldots \vee Q_{m}$
- Examples
-P and $\neg \mathrm{P} \vee \mathrm{Q}$
- derive Q (Modus Ponens)
$-(\neg \mathrm{P} \vee \mathrm{Q})$ and $(\neg \mathrm{Q} \vee \mathrm{R}):$ derive $\neg \mathrm{P} \vee \mathrm{R}$
$-\mathbf{P}$ and $\neg \mathbf{P}$: derive False [contradiction!]
- $(\mathrm{P} \vee \mathrm{Q})$ and $(\neg \mathrm{P} \vee \neg \mathrm{Q}):$ derive True

Resolution Refutation for Propositional Logic

To prove validity of $\mathrm{F}=((\mathrm{F} 1 \Lambda \mathrm{~F} 2 \Lambda \ldots \Lambda \mathrm{Fn}) \rightarrow \mathrm{G})$ we shall attempt to prove that $\sim \mathrm{F}=(\mathrm{F} 1 \Lambda \mathrm{~F} 2 \Lambda \ldots \Lambda \mathrm{Fn} \Lambda \sim \mathrm{G})$ is unsatisfiable Steps for Proof by Resolution Refutation: 1. Convert of Clausal Form /Conjunctive Normal Form (CNF, Product of Sums). 2. Generate new clauses using the resolution rule. 3. At the end, either False will be derived if the formula $\sim \mathrm{F}$ is unsatisfiable implying F is valid.	If Asha is elected VP then Rajat is chosen as GSec and Bharati is chosen as Treasurer. Rajat is not chosen as G-Sec. Therefore Asha is not elected VP. F1: $(\mathrm{a} \rightarrow(\mathrm{b} \Lambda \mathrm{c}))=(\sim \mathrm{a} V \mathrm{~b}) \Lambda(\sim \mathrm{a} V \mathrm{c})$ F2: ~b, G: ~a, ~G: a	Clauses of Cla \sim F $=(\mathrm{C} 1 \Lambda \mathrm{C} 2$ where: C1: (C2: C3: C4: a To prove that
	Resolution Rule: Let $\mathrm{C} 1=\mathrm{a} \mathrm{Vb}$ and $\mathrm{C} 2=$ then a new clause $\mathrm{C} 3=\mathrm{bVc}$ can be derived (Proof by showing that $((\mathrm{C} 1 \Lambda \mathrm{C} 2) \rightarrow \mathrm{C} 3)$ is To prove unsatisfiability use the Resolution reach a situation where we have two contrad form $\mathrm{C} 1=\mathrm{a}$ and $\mathrm{C} 2=\sim \mathrm{a}$ from which False If the propositional formula is satisfiable the contradiction and eventually no new clauses For propositional logic the procedure termin Resolution Rule is Sound and Complete	id formula). epeatedly to clauses of the derived. will not reach a e derivable.

Applying Resolution Refutation for Propositional Logic

Let $\mathrm{C} 1=\mathrm{a} \mathrm{V}$ b and $\mathrm{C} 2=\sim \mathrm{a} \mathrm{V} \mathrm{c}$	Rajesh either took the bus or came by cycle to class. If he then a new clause $\mathrm{C} 3=\mathrm{b} \mathrm{V} \mathrm{c} \mathrm{can} \mathrm{be} \mathrm{derived}$. came by cycle or walked to class he arrived late. Rajesh did not arrive late. Therefore he took the bus to class. (Proof by showing that $((\mathrm{C} 1 \wedge \mathrm{C} 2) \rightarrow \mathrm{C} 3)$ is
a valid formula).	
To prove unsatisfiability use the Resolution	
Rule repeatedly to reach a situation where we	
have two contradictory clauses of the form	
$\mathrm{C} 1=\mathrm{a}$ and $\mathrm{C} 2=\sim \mathrm{a}$ from which False can be	
derived.	
If the propositional formula is satisfiable then	
we will not reach a contradiction and	
eventually no new clauses will be derivable.	
For propositional logic the procedure	
terminates.	
Resolution Rule is Sound and Complete	

GSec and Bharati is chosen as Treasurer. Rajat is not chosen as G-Sec. Therefore Asha is not elected VP. Resolution Rule: Let $\mathrm{C} 1=\mathrm{a} \mathrm{V}$ b and $\mathrm{C} 2=\sim \mathrm{a} \mathrm{V} \mathrm{c}$
then a new clause $\mathrm{C} 3=\mathrm{bVc}$ can be derived. (Proorby showing that ($\mathrm{C} 1 \Lambda(2) \rightarrow(3)$ is a valid formula). To prove unsatisfiability use the Resolution Rule repeatedly to reach a situation where we have two contradictory clauses of the form $\mathrm{C} 1=\mathrm{a}$ and $\mathrm{C} 2=\sim \mathrm{a}$ from which False can be derived.
ifopositional formula is satisfiable then we will not reach For propositional logic the procedure terminates. Resolution Rule is Sound and Complete
then a new clause $\mathrm{C} 3=\mathrm{bVc}$ can be derived. (Proof by showing that $((\mathrm{C} 1 \Lambda \mathrm{C} 2) \rightarrow \mathrm{C} 3)$ is a valid formula).
Rule repeatedly to reach a situation where we have two contradictory clauses of the form $\mathrm{Cl}=\mathrm{a}$ and $\mathrm{C} 2=\sim \mathrm{a}$ from which False can be derived.
If the propositional formula is satisfiable then we will not reach a contradiction and

For propositional logic the procedure
terminates.
Resolution Rule is Sound and Complete
\square

If Asha is elected VP then Rajat is chosen as G-Sec and
Bharati is chosen as Treasurer. Rajat is not chosen as G-S Therefore Asha is not elected VP.
F1: $(\mathrm{a} \rightarrow(\mathrm{b} \Lambda \mathrm{c}))=(\sim \mathrm{a} \vee \mathrm{b}) \Lambda(\sim \mathrm{a} \vee \mathrm{c})$
F2: ~b
G: ~a
$\sim \mathrm{G}: \mathrm{a}$

Clauses of Clause Form: $\sim \mathrm{F}$ $=(\mathrm{C} 1 \Lambda \mathrm{C} 2 \Lambda \mathrm{C} 3 \Lambda \mathrm{C} 4)$
where: C1: ($\sim \mathbf{a} / \mathrm{b})$
C2: ($\sim \mathrm{a} V \mathrm{c})$
C3: ~b C4: a
To prove that \sim F is False

New Clauses Derived C5: ~a (Using C1 and C3) C6: False (using C4 and C5)
we will not reach a contradiction and eventually no new clauses will be derivable.
For propositional logic the procedure terminates.
Resolution Rule is Sound and Complete

Applying Resolution Refutation for Propositional Logic

Resolution in first-order logic

- Given sentences
$P_{1} \vee \ldots \vee P_{n}$
$\mathrm{Q}_{1} \vee \ldots \vee \mathrm{Q}_{\mathrm{m}}$
- in conjunctive normal form (CNF)
- each P_{i} and Q_{i} is a literal, i.e., a positive or negated predicate symbol with its terms,
- if P_{j} and $\neg Q_{k}$ unify with substitution list θ, then derive the resolvent sentence:
subst $\left(\theta, P_{1} \vee \ldots \vee P_{j-1} \vee P_{j+1} \ldots P_{n} \vee Q_{1} \vee \ldots Q_{k-1} \vee Q_{k+1} \vee \ldots \vee Q_{m}\right)$
- Example
- from clause
- and clause
$\mathbf{P}(\mathbf{x}, \mathbf{f (a)}) \vee \mathbf{P}(\mathbf{x}, \mathbf{f}(\mathrm{y})) \vee \mathbf{Q}(\mathrm{y})$
$\rightarrow P(z, f(a)) \vee \neg Q(z)$
- using
$\mathbf{P}(\mathrm{z}, \mathrm{f}(\mathrm{y})) \vee \mathbf{Q}(\mathrm{y}) \vee \neg \mathbf{Q}(\mathrm{z})$
$\theta=\{\mathbf{x} / \mathbf{z}\}$
${ }_{3} 9$

Resolution refutation

- If Will goes, Jane will go
- ~W V J
- If doesn't go, Jane will still go $J \vee J=J$
- W V J
- Will Jane go?
- $\mid=\mathrm{J}$?

Don't need to use other equivalences if we use resolution in refutation style

$$
\begin{array}{ll}
\sim J & \sim W \\
\sim W \vee J & \\
W \vee J & J
\end{array}
$$

A resolution proof tree

Resolution refutation

- Given a consistent set of axioms $K B$ and goal sentence Q , show that $\mathrm{KB} \mid=\mathrm{Q}$
- Proof by contradiction: $\mathrm{Add} \neg \mathrm{Q}$ to KB and try to prove false. i.e., $(\mathrm{KB} \mid-\mathrm{Q}) \leftrightarrow(\mathrm{KB} \vee \neg \mathrm{Q} \mid$ - False $)$
- Resolution is refutation complete: it can establish that a given sentence Q is entailed by KB, but can't (in general) be used to generate all logical consequences of a set of sentences
- Also, it cannot be used to prove that Q is not entailed by KB.
- Resolution won't always give an answer since entailment is only semidecidable - And you can't just run two proofs in parallel, one trying to prove Q and the other trying to prove $\neg \mathrm{Q}$, since KB might not entail either one

Resolution Refutation for Predicate Logic

Given a formula F which we wish to check for validity, we first check if there are any free variables. We then quantify all free variables universally. Create $F^{\prime}=\sim F$ and check for unsatisfiability of F^{\prime}, STEPS:
Conversion to Clausal (CNF) Form:

- Handling of Variables and Quantifiers, Ground Instances
Applying the Resolution Rule:
- Concept of Unification
- Principle of Most General Unifier (mgu)
- Repeated application of Resolution Rule using mgu

CONVERSION TO CLAUSAL FORM IN PREDICATE LOGIC 1. Remove implications and other Boolean symbols converting to equivalent forms using $\sim, \mathrm{V}, \Lambda$
2. Move negates (\sim) inwards as close as possible
3. Standardize (Rename) variables to make them unambiguous
4. Remove Existential Quantifiers by an appropriate new function /constant symbol taking into account the variables dependent on the quantifier (Skolemization)
5. Drop Universal Quantifiers
6. Distribute V over Λ and convert to CNF

Resolution Refutation for Predicate Logic

We need answers to the following questions

- How to convert FOL sentences to conjunctive normal form (a.k.a. CNF, clause form): - normalization and skolemization
- How to unify two argument lists, i.e., how to find their most general unifier (mgu) θ : - unification
- How to determine which two clauses in KB should be resolved next (among all resolvable pairs of clauses) :
- resolution (search) strategy

F1: Vx(goes(Mary, x$) \rightarrow \operatorname{goes}(\operatorname{Lamb}, \mathrm{x})$
F2: goes(Mary, School)
G: goes(Lamb, School)
To prove: $(\mathrm{F} 1 \wedge \mathrm{~F} 2) \rightarrow \mathrm{G})$ is valid

Converting to CNF

Converting sentences to CNF

1. (a) Eliminate all \leftrightarrow connectives
$(\mathrm{P} \leftrightarrow \mathrm{Q}) \Rightarrow\left((\mathrm{P} \rightarrow \mathrm{Q})^{\wedge}(\mathrm{Q} \rightarrow \mathrm{P})\right)$
(b) Eliminate all \rightarrow connectives
$(\mathrm{P} \rightarrow \mathrm{Q}) \Rightarrow(\neg \mathrm{P} \vee \mathrm{Q})$
2. Reduce the scope of each negation symbol to a single predicate
$\neg \neg \mathrm{P} \Rightarrow \mathrm{P}$
$\neg(\mathrm{P} \vee \mathrm{Q}) \Rightarrow \neg \mathrm{P} \wedge \neg \mathrm{Q}$
$\neg(\mathrm{P} \wedge \mathrm{Q}) \Rightarrow \neg \mathrm{P} \vee \neg \mathrm{Q}$
$\neg(\forall x) P \Rightarrow(\exists x) \neg P$
$\neg(\exists \mathrm{x}) \mathrm{P} \Rightarrow(\forall \mathrm{x}) \neg \mathrm{P}$
3. Standardize variables: rename all variables so that each quantifier has its own unique variable name $(\forall \mathrm{x}: \mathrm{P}(\mathrm{x})) \vee(\exists \mathrm{x}: \mathrm{Q}(\mathrm{x})) \equiv(\forall \mathrm{x}: \mathrm{P}(\mathrm{x})) \vee(\exists \mathrm{y}: \mathrm{Q}(\mathrm{y}))$

Converting sentences to clausal form

Skolem constants and functions
4. Move all quantifiers to the left without changing their relative order. $(\forall x: P(x)) \vee(\exists y: Q(y)) \equiv \forall x: \exists y:(P(x) \vee(Q(y))$
Eliminate existential quantification \exists by introducing Skolem constants/functions (Skolemization).

$(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{P}(\mathrm{c})$

\mathbf{c} is a Skolem constant (a brand-new constant symbol that is not used in any other sentence)
$(\forall \mathrm{x})(\exists \mathrm{y}) \mathrm{P}(\mathrm{x}, \mathrm{y}) \Rightarrow(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$
since \exists is within the scope of a universally quantified variable, use a Skolem function f to construct a new value that depends on the universally quantified variable
f must be a brand-new function name not occurring in any other sentence in the KB.
E.g., $(\forall \mathrm{x})(\exists \mathrm{y}) \operatorname{loves}(\mathrm{x}, \mathrm{y}) \Rightarrow(\forall \mathrm{x}) \operatorname{loves}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$

In this case, $\mathrm{f}(\mathrm{x})$ specifies the person that x loves

Exercise : Conversion to Clausal Form

1. Remove implications and other
Boolean symbols converting to
equivalent forms using $\sim, \mathrm{V}, \Lambda$
2. Move negates (\sim) inwards as
close as possible
3. Standardize (Rename) variables
to make them unambiguous
4. Remove Existential Quantifiers
by an appropriate new function
constant symbol taking into
account the variables dependent on
the quantifier (Skolemization)
5. Drop Universal Quantifiers
6. Distribute V over Λ and convert
to CNF

$\forall \mathrm{x}(\forall \mathrm{y}(\operatorname{student}(\mathrm{y}) \rightarrow \operatorname{likes}(\mathrm{x}, \mathrm{y})) \rightarrow(\operatorname{Hz}(\operatorname{likes}(\mathrm{z}, \mathrm{x})))$

Converting sentences to clausal form

5. Remove universal quantifiers by (1) moving them all to the left end; (2) making the scope of each the entire sentence; and (3) dropping the "prefix" part Ex: $(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{P}(\mathrm{x})$
6. Put into conjunctive normal form (conjunction of disjunctions) using distributive and associative laws
$(\mathrm{P} \wedge \mathrm{Q}) \vee \mathrm{R} \Rightarrow(\mathrm{P} \vee \mathrm{R}) \wedge(\mathrm{Q} \vee \mathrm{R})$
$(P \vee Q) \vee R \Rightarrow(P \vee Q \vee R)$
7. Split conjuncts into separate clauses
8. Standardize variables so each clause contains only variable names that do not occur in any other clause

Exercise :Converting sentences to CNF

1. $(\forall \mathrm{x})(\mathrm{P}(\mathrm{x}) \rightarrow((\forall \mathrm{y})(\mathrm{P}(\mathrm{y}) \rightarrow \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge \neg(\forall \mathrm{y})(\mathrm{Q}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{P}(\mathrm{y}))))$
2. Anyone who likes all animals is loved by someone:

Solution: Example 1 CNF

$$
\underset{\mathbf{P}(\mathbf{y})) \mathrm{)})}{(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow((\forall \mathrm{y})(\mathbf{P}(\mathrm{y}) \rightarrow \mathbf{P}(\mathbf{f}(\mathrm{x}, \mathrm{y}))) \wedge \neg(\forall \mathrm{y})(\mathrm{Q}(\mathrm{x}, \mathrm{y}) \rightarrow}
$$ $\mathrm{P}(\mathrm{y}))$)

1. Eliminate \rightarrow

$(\forall x)(\neg P(x) \vee((\forall y)(\neg P(y) \vee P(f(x, y))) \wedge \neg(\forall y)(\neg Q(x, y) \vee P(y))))$
2. Reduce scope of negation
$(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\exists \mathrm{y})(\mathrm{Q}(\mathrm{x}, \mathrm{y}) \wedge \neg \mathrm{P}(\mathrm{y}))))$
3. Standardize variables
$(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\exists \mathrm{z})(\mathrm{Q}(\mathrm{x}, \mathrm{z}) \wedge \neg \mathrm{P}(\mathrm{z}))))$
4. Eliminate existential quantification
$(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\mathrm{Q}(\mathrm{x}, \mathrm{g}(\mathrm{x})) \wedge \neg \mathrm{P}(\mathrm{g}(\mathrm{x})))))$
5. Drop universal quantification symbols
$(\neg \mathrm{P}(\mathrm{x}) \vee((\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\mathrm{Q}(\mathrm{x}, \mathrm{g}(\mathrm{x})) \wedge \neg \mathrm{P}(\mathrm{g}(\mathrm{x})))))$
6. Convert to conjunction of disjunctions
$(\neg P(x) \vee \neg P(y) \vee P(f(x, y))) \wedge(\neg P(x) \vee Q(x, g(x))) \wedge$ $(\rightarrow \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{g}(\mathrm{x})))$
. Create separate clauses $\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))$
$\neg P(x) \vee Q(x, g(x))$
$\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{g}(\mathrm{x}))$
8. Standardize variables
$\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))$
$\neg \mathrm{P}(\mathrm{z}) \vee \mathrm{Q}(\mathrm{z}, \mathrm{g}(\mathrm{z}))$
$\neg \mathrm{P}(\mathrm{w}) \vee \neg \mathrm{P}(\mathrm{g}(\mathrm{w}))$

Solution Example 2 : CNF

Original sentence:
Anyone who likes all animals is loved by someone:
$\forall \mathrm{x}[\forall \mathrm{y} \operatorname{Animal}(\mathrm{y}) \Rightarrow \operatorname{Likes}(x, y)] \Rightarrow[\exists \mathrm{y} \operatorname{Loves}(y, x)]$

1. Eliminate biconditionals and implications

$\forall \mathrm{x}[\neg \forall \mathrm{y} \neg \operatorname{Animal}(y) \vee \operatorname{Likess}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$
2. Move \neg inwards:

Recall: $\neg \forall \mathrm{x} \mathrm{p} \equiv \exists \mathrm{x} \neg \mathrm{p}, \neg \exists \mathrm{x} \mathrm{p} \equiv \forall \mathrm{x} \neg \mathrm{p}$
$\forall \mathrm{x}[\exists \mathrm{y} \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Likes}(x, y))] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$
$\forall \mathrm{x}[\exists \mathrm{y} \neg \neg \operatorname{Animal}(\mathrm{y}) \wedge \neg \operatorname{Likes}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$
$\forall \mathrm{x}[\exists \mathrm{y}$ Animal $(\mathrm{y}) \wedge \neg \operatorname{Likes}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$
Either there is some animal that x doesn' t like if that is not the case then someone loves x

Solution Example 2 : CNF cont.

3. Standardize variables: each quantifier should use a different one

$\forall \mathrm{x}[\exists \mathrm{y} \operatorname{Animal}(y) \wedge \neg \operatorname{Likes}(x, y)] \vee[\exists \mathrm{z} \operatorname{Loves}(z, x)]$
4. Skolemize:
$\forall \mathrm{x}[\operatorname{Animal}(A) \wedge \neg \operatorname{Likes}(x, A)] \vee \operatorname{Loves}(B, x)$
Everybody fails to love a particular animal A or is loved by a particular person B Animal(cat), Likes(marry, cat), Loves(john, marry) Likes(cathy, cat), Loves(Tom, cathy)
a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall \mathrm{x}[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
(reason: animal y could be a different animal for each x .)

Solution Example 2 : CNF cont.

5. Drop universal quantifiers:
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
(all remaining variables assumed to be universally quantified)
6. Distribute \vee over \wedge :
$[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]$

Original sentence is now in CNF form - can apply same ideas to all sentences in KB to convert into CNF
Also need to include negated query. Then use resolution to attempt to derive the empty clause which show that the query is entailed by the KB

Unification

Unification

- Unification is a "pattern-matching" procedure

Takes two atomic sentences, called literals, a input
Returns "Failure" if they do not match and a substitution list, θ, if they do

- That is, unify $(p, q)=\theta$ means $\operatorname{subst}(\theta, p)=$ $\operatorname{subst}(\theta, q)$ for two atomic sentences, p and q
- θ is called the most general unifier (mgu)
- All variables in the given two literals are implicitly universally quantified
- To make literals match, replace (universally quantified) variables by terms
- Unify is a linear-time algorithm that returns the most general unifier (mgu), i.e., the shortest-length substitution list that makes the two literals match.
- In general, there is not a unique minimumlength substitution list, but unify returns one of minimum length
- A variable can never be replaced by a term containing that variable
Example: $\mathrm{x} / \mathrm{f}(\mathrm{x})$ is illegal.
- This "occurs check" should be done in the above pseudo-code before making the recursive calls

Substitution, Unification, Resolution

[^0]- C1: ~studies(x,y) V passes(x,y)
- C2: studies(Madan,z)
- C3: ~passes(Chetan, Physics)
- C4: ~passes(w, Mechanics)

What new clauses can we derive by the resolution principle?
Ground Clause and a more general clause Concept of substitution / unification and the Most General Unifier (mgu) Resolution Rule for Predicate Calculus: Repeated Application of Resolution using mgu

Exercise :

Example: Did Curiosity kill the cat

- Jack owns a dog. Every dog owner is an animal lover. No animal lover kills an animal. Either Jack or Curiosity killed the cat, who is named Tuna. Did Curiosity kill the cat?
- These can be represented as follows:
A. $(\exists x) \operatorname{Dog}(x) \wedge$ Owns $($ Jack, $x)$
B. $(\forall \mathrm{x})((\exists \mathrm{y}) \operatorname{Dog}(\mathrm{y}) \wedge \operatorname{Owns}(\mathrm{x}, \mathrm{y})) \rightarrow$ AnimalLover (x)
C. $(\forall \mathrm{x})$ AnimalLover $(\mathrm{x}) \rightarrow((\forall \mathrm{y})$ Animal $(\mathrm{y}) \rightarrow \neg$ Kills $(\mathrm{x}, \mathrm{y}))$
D. Kills(Jack,Tuna) \vee Kills(Curiosity,Tuna)
E. $\operatorname{Cat}($ Tuna $)$
F. $(\forall \mathrm{x}) \operatorname{Cat}(\mathrm{x}) \rightarrow \operatorname{Animal}(\mathrm{x})$
G. Kills(Curiosity, Tuna) GOAL

Practice example

- Jack owns a dog
- Every dog owner is an animal lover.
- No animal lover kills an animal.
- Either Jack or Curiosity killed the cat, who is named Tuna.
- Did Curiosity kill the cat?

Convert to clause form

A1. (Dog(D))

D is a skolem constant
A2. (Owns(Jack,D))
B. $(\neg \operatorname{Dog}(\mathrm{y}), \neg \operatorname{Owns}(\mathrm{x}, \mathrm{y})$, AnimalLover(x$))$
C. (\neg AnimalLover(a), \neg Animal(b), \neg Kills(a,b))
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. $(\neg \operatorname{Cat}(\mathrm{z}), \operatorname{Animal}(\mathrm{z}))$

- Add the negation of query:
$\neg \mathrm{G}:(\neg$ Kills(Curiosity, Tuna))

The resolution refutation proof

R1: \neg G, D, \{\}	(Kills(Jack, Tuna))
R2: R1, C, \{a/Jack, b/Tuna\} \sim Animal(Tuna))	(\sim AnimalLover(Jack),
	$(\sim \operatorname{Dog}(\mathrm{y}), \sim \mathrm{Owns}(\mathrm{Jack}, \mathrm{y})$,
R4: R3, A1, \{y/D\}	(\sim Owns(Jack, D), \sim Animal(Tuna))
R5: R4, A2, \{\}	(\sim Animal(Tuna))
R6: R5, F, \{z/Tuna $\}$	($\sim \operatorname{Cat}$ (Tuna))
R7: R6, E, \{\}	FALSE

- The proof tree
$\underbrace{G}{ }^{(}$
RI: $K(J, T) \backslash\{a / J, b / T\}\}^{C}$
$R 2: \neg A L(T) \vee \neg A(T) \quad B$
$R 3$: $\rightarrow D(1) \vee(2(1)$ (1)

R7: FALSE

Logic Programming

- Logic programming is a programming language paradigm in which logical assertions are viewed as programs, e.g : PROLOG
- A PROLOG program is described as a series of logical assertions, each of which is a Horn Clause.
- A Horn Clause is a clause that has at most one positive literal.
- Eg p, $\neg \mathrm{p}$ V q etc are also Horn Clauses.
- The fact that PROLOG programs are composed only of Horn Clauses and not of arbitrary logical expressions has two important consequences.
- Because of uniform representation a simple \& effective interpreter can be written.
- The logic of Horn Clause systems is decidable.

Logic Programming

- Even PROLOG works on backward reasoning.
- The program is read top to bottom, left to right and search is performed depth-first with backtracking.
- Syntactic difference between the logic and the PROLOG representations :

PROLOG interpreter has a fixed control strategy, so assertions in the PROLOG program define a particular search path to answer any question.
Where as Logical assertions define set of answers that they justify, there can be more than one answers, it can be forward or backward tracking.

- Control Strategy for PROLOG states that we begin with a problem statement, which is viewed as a goal to be proved.
- Look for the assertions that can prove the goal
- To decide whether a fact or a rule can be applied to the current problem, invoke a standard unification procedure
- Reason backward from that goal until a path is found that terminates with assertions in the program.
- Consider paths using a depth-first search strategy and use backtracking
- Propagate to the answer by satisfying the conditions.

Prolog

- A logic programming language based on Horn clauses
- Resolution refutation
- Control strategy: goal-directed and depth-first
- always start from the goal clause
- always use the new resolvent as one of the parent clauses for resolution
- backtracking when the current thread fails
- complete for Horn clause KB
- Support answer extraction (can request single or all answers)
- Orders the clauses and literals within a clause to resolve non-determinism
- $\mathrm{Q}(\mathrm{a})$ may match both $\mathrm{Q}(\mathrm{x})<=\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{y})<=\mathrm{R}(\mathrm{y})$
- A (sub)goal clause may contain more than one literals, i.e., $<=$ P1(a), P2(a)
- Use "closed world" assumption (negation as failure)
- If it fails to derive $P(a)$, then assume $\sim P(a)$

Representation in logic

- $\forall \mathrm{x}: \operatorname{pet}(\mathrm{x}) \Lambda \operatorname{small}(\mathrm{x}) \rightarrow \operatorname{apartment}(\mathrm{x})$
- $\forall \mathrm{x}: \operatorname{cat}(\mathrm{x}) \vee \operatorname{dog}(\mathrm{x}) \rightarrow \operatorname{pet}(\mathrm{x})$
- $\forall \mathrm{x}: \operatorname{poodle}(\mathrm{x}) \rightarrow \operatorname{dog}(\mathrm{x}) \Lambda \operatorname{small}(\mathrm{x})$
- Poodle(abs)

Representation in PROLOG

- Apartment (x) :- pet(x), small(x)
- Pet (x) :- $\operatorname{dog}(x)$
- $\operatorname{Dog}(\mathrm{x})$:- poodle (x)
- Small(x) :- poodle (x)
- Poodle(abs)

Syntax and Rule

- .pl files contain lists of clauses
- Clauses can be either facts or rules

male (harry). Argument to predicate
child(bob, harry).
$\operatorname{son}(\mathrm{X}, \mathrm{Y}):-\quad$ Indicates a rule

$$
\text { male }(X), \underbrace{\text { child }(X, Y) . ~}_{\text {"and" }}
$$

- Rules combine facts to increase knowledge of the system
son (X,Y):-
male (X), child (X,Y).
- X is a son of Y if X is male and X is a child of Y

Questions

- In Prolog the queries are statements called directive
Syntactically, directives are clauses with an empty left-hand side.
- Example : ? - grandparent(X, W).
- This query is interpreted as: Who is a grandparent of X ?
- The result of executing a query is either success or failure
- Success, means the goals specified in the query holds according to the facts and rules of the program.
- Failure, means the goals specified in the query does not hold according to the facts and rules of the program
- Ask the Prolog virtual machine questions
- Composed at the ?- prompt
- Returns values of bound variables and yes or no
?- son (bob, harry).
yes
?- king(bob, france). no
- Can bind answers to questions to variables
- Who is bob the son of? ($\mathrm{X}=$ harry $)$
?- son (bob, X).
- Who is male? ($\mathrm{X}=\mathrm{bob}$, harry
?- male(X).
- Is bob the son of someone? (yes)
?- son (bob, _).
- No variables bound in this case!

Applications

- Intelligent systems
- Complicated knowledge databases
- Natural language processing
- Logic data analysis

Backtracking

- How are questions resolved?
?- son(X,harry).
- Recall the rule:
son (X,Y):- male(X), child(X,Y).
- Y is bound to the atom "harry" by the question.

Prolog Exercise : Knowledge Base in FOL

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Exercise: Formulate this knowledge in FOL.

Query: Criminal(West)?

Knowledge Base in FOL

The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
... it is a crime for an American to sell weapons to hostile nations.
American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
Nono ... has some missiles, i.e., $\exists \mathrm{x}$ Owns(Nono, x$) \wedge$ Missile(x):
Owns(Nono, M_{l}) and Missile(M_{ν})
. all of its missiles were sold to it by Colonel West
Missile $(x) \wedge$ Owns $($ Nono,$x) \Rightarrow$ Sells(West, x, Nono)
Missiles are weapons:
Missile $(x) \Rightarrow$ Weapon (x)
An enemy of America counts as "hostile":
Enemy (x, America) \Rightarrow Hostile((x)
West, who is American
American(West)
The country Nono, an enemy of America .
Enemy(Nono,America)

Logic programming: Prolog

- $\operatorname{Program}=$ set of clauses $=$ head $:-$ literal $_{1}$, ... literal ${ }_{n}$.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z). Missile(m1).
Owns (nono,m1).
Sells(west, X, nono):- Missile(X) Owns(nono, X).
weapon (X):- missile(X).
hostile (X) :- enemy (X,america).
american (west)
Query : criminal(west)?
Query: criminial(X) ?

Limitations of Resolution (Evolution of Natural Deduction)

- The previous method of resolution brings uniformity, everything looks the same. Hence at times, it becomes very difficult to pick the statement that may be useful in solving the problem.
- As we convert everything into clause form, we loose important heuristic information.
- Eg. We believe that all judges who are not crooked are welleducated
- $¥ \mathrm{x}:$ judge $(\mathrm{x}) ~ \grave{\mathrm{~A}} \neg$ crooked (x$) \quad$ educated (x)
- In the clause form it will take the following shape
- \neg judge (x) V crooked(x) V educated(x)

Natural Deduction

- Another problem with the use of resolution is that people do not think in resolution.
- Computers are still poor at proving very hard things, hence we need a practical standpoint. (focus is on interaction)
- To facilitate it we led to Natural Deduction.
- It describes a blend of techniques, used in combination to solve problems that are not traceable by any one method alone.
- One common technique is to talk about objects involved in the predicate and not the predicate itself.
- Why study Satisfiability?
- Canonical NP complete problem.
- several hard problems modeled as SAT
- Tonne of applications
- State-of-the-art solvers superfast

Reduction to satisfiability problem

- Boolean satisfiability problem (SAT) : mid-1990's
- given a formula, to check whether it is satisfiable.
- importance in mantheoretical computer science, complexity theory, algorithmics, cryptography and artificial intelligence.
- SAT: Model Finding
- Find assignments to variables that makes a formula true
- The problem of determining the satisfiability of sentences in propositional logic

Testing Circuit Equivalence

Testing Circuit Equivalence

- Do two circuits compute the same function?
$C \equiv A \wedge B$
$\boldsymbol{C}^{\prime} \equiv \neg \boldsymbol{D} \vee \boldsymbol{E}$
$D \equiv \neg A$
$\boldsymbol{E} \equiv \neg \mathrm{B}$
Resolution :
$\neg\left(C \equiv C^{\prime}\right)$

SAT Translation of N-Queens

- At least one queen each column:
(Q11 v Q12 v Q13 v ... v Q18)
(Q21 v Q22 v Q23 v ... v Q28)
- No attacks:
(\sim Q11 v~Q12)
(\sim Q11 v ~Q22)
(\sim Q11 v ~Q21)

Real-World Reasoning
Tackling inherent computational complexity

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
- Syntax: formal structure of sentences
- Semantics: truth of sentences wrt models
- Entailment: necessary truth of one sentence given another
- Inference: deriving sentences from other sentences
- Soundness: derivations produce only entailed sentences
- Completeness: derivations can produce all entailed sentences
- FC and BC are linear time, complete for Horn clauses
- Resolution is a sound and complete inference method for propositional and firstorder logic
- SAT: Find assignments to variables that makes a formula true

References

- Artificial Intelligence by Elaine Rich \& Kevin Knight, Third Ed, Tata McGraw Hill
- Artificial Intelligence and Expert System by Patterson
- hhtt://www.cs.mit.edu.aul/Al-Search/Product
- http://aima.cs.berkeley.edudemos.html (for more demos)
- Artificial Intelligence and Expert System by Patterson
- Slides adapted from CS188 Instructor: Anca Dragan, University of California, Berkeley
- Slides adapted from CS60045 ARTIFICIAL INTELLIGENCE

Next:

- Module 5: AI Planning

[^0]: Consider clauses:

