

Situation calculus

- A solution is a plan that when applied to the initial
- state yields a situation satisfying the goal query:
- At(Home,Result'(p,S0))
- ^ Have(Milk,Result'(p,S0))
- ^ Have(Bananas,Result'(p,S0))

Dartmouth Summer Research Project on Artificial

· Use first-order logic and theorem proving to plan strategies from start to goal STRIPS language:

STanford Research Institute Problem Solver

- Classical approach that most planners use

- Lends itself to efficient planning algorithms · Environment: office environment with specially

Intelligence (1956)

colored and shaped objects STRIPS planner: developed for this system to determine the actions of the robot should take to

Cost of Shakey: \$100, 000

achieve goals

- ^ Have(Drill,Result'(p,S0))
- Thus we would expect a plan (i.e., variable assignment through unification) such as:
- p = [Go(Grocery), Buy(Milk), Buy(Bananas), Go(HardwareStore), Buy(Drill), Go(Home)]

STRIPS-Based Approach to Robot Control

Non-Linear Planning

- A plan that consists of sub-problems, which are solved simultaneously is said to be a non-linear plan.
- · In case of the goal stack planning, as discussed previously, it poses some problems. Achieving a goal could possibly undo any of the already achieved goals and its called as Sussman's anomaly.
- In linear planning, just one goal is taken at a time and solved completely before the next one is taken
- Example :
- You want to take the car for servicing and have to make an important phone call.
- In case of Linear planning, First you will achieve the goal of making a phone call and then will take the car for servicing
- Rather than completing both the tasks in a linear way, after completion of the task 1, as partial step, i.e., start the car and put on the Bluetooth, then complete the task 2 of phone call and then finally, complete the task 1 by leaving the car at the service station. This can be an example of non-linear planning.

Many AI Planners in History

- · Well-known AI Planners:
- STRIPS (Fikes and Nilsson, 1971): theoremproving system
- ABSTRIPS (Sacerdoti, 1974): added hierarchy of abstractions
- HACKER (Sussman, 1975): use library of procedures to plan
- NOAH (Sacerdoti, 1975): problem decomposition and plan reordering

Origin of Automation: Replacing Human Muscle Power

- 10,000 BC Stone tools used in early civilization: tools make better tools.
- · Design of simple automation (150 BC) moving engine, Herons door etc. in Greece.

- · 1780 AD saw the creation of automatic dolls which could write, draw pictures etc. · Punch cards used in power looms in France in 1801 for manufacture of textiles
- Joseph-Marie-Jacquard.

Origin of Automation: Replacing Human Muscle Power

- · Programmed textile loom: 1801 in France
- · Hard Automation in Ford Motor Company 1904 - Idea of transfer lines in which a car was assembled at different stations
 - First use of hard automation alignment devices, transfer devices etc
 - 1904 Henry Ford's mass production of vehicles in the USA.

Planning is an integral part of Automation

- Recommended clip from Charlie Chaplin's Modern Times to see what can go wrong:
- 1. Partial Order Planning 2. GraphPlan and SATPlan

What changed everything?

- · Mechanical systems became electro-mechanical
- Microprocessor (1949) : concept of reprogram
- 1950 SHAKY: First robot-Stanford University
- 1952 George Dovel : teach / play back devices for NC machines/ robots.

Robot : History

- Hierarchical planning
- · What we intend to learn:

· 1921 Karel Kapec's play depicting human like

• 1942 Isaac Asimov first used the term Robotics.

material handling for the Atom Bomb project.

1945 master slave manipulator made for radioactive

mechanical man - robots.

A strictly mechanical device

Motion transfer by wire rope and pulleys

- Goal stack planning

- Non-linear planning

Clumsy robots to sophisticated humanoids

What is the definition of a Robot ?To be called a robot, it should do some or all of the following:

- move around
- sense and manipulate the environment.
- display intelligent behavior

arm

· Hydraulic actuators

· Pneumatic actuators

· Grippers : parallel jaw gripper

· Revolute joints

· Prismatic joints

- Robots are physical agents that perform tasks by manipulating the physical world. They are equipped with :
- Effectors : Leg, wheels , joints and grippers etc.
- Sensors : Cameras, radars, lasers and microphone, gyroscopes, strain and torque sensors, accelerometers etc.

Producing Motion

· The mechanism that initiates the motion of an effector is called an actuator

· Electric actuator : used in system with rotational motion like joints on a robot

Robot Hardware

- Mobile robots : with wheels, legs or rotors to move about the environme
- Quadcopter drones
- Unmanned Aerial Vehicle (UAV)
- Autonomous underwater vehicles (AUV)
- Autonomous car or rovers
- Legged robots

Given

Sensing the World

- · SENSORS: are the perceptual interface between robot and environment.
- · Passive sensors : True observers of the environment
- Cameras, Stereo vision , Kinect (cameras+ structured light projector)
- Active sensors : send energy into the environment; rely on the fact that this energy is reflected back to the sensor

Range finders :

- Sonar, scanning lidars, Radar
- · Tactile sensors : whiskers, bump panels and touch sensitive skin.
- Location sensors :
- Global Positioning system (GPS), Differential GPS
- Proprioceptive sensors : inform robot of its own motion
- eg : shaft decoders , odometry, inertial sensors, force sensors or torque sensors

Differences between Robotics and Automation?

- Robotics focuses on systems incorporating sensors and actuators that operate autonomously or semi- autonomously in cooperation with humans.
 - Environment is partially observable and stochastic.
- Robotics research emphasizes intelligence and adaptability to cope with
 unstructured environments.
- Automation research emphasizes efficiency, productivity, quality, and reliability, focusing on systems that operate autonomously, often in structured environments over extended periods, and on the explicit structuring of such environments.

Three generations of robotics / engineering

- First generation of robots: simple pick and place devices with no external sensors.
- Second generation robots: external Sensors (vision, tactile, etc) for interaction with the environment.
- Third generation robots: intelligence, smart materials, bio, etc.
- Future robots: bio-robots, micro, nano cybogs, aneroids etc.

a model of the world M^W current state of the robot s ^W current

What is Planning for Robotics?

- current state of the world s W current
- cost function C of robot actions
- desired set of states for robot and world G
- Compute a plan π that
 - prescribes a set of actions a1,...aK in AR the robot should execute

- model (states and actions) of the robot(s) M^R = <S^R, A^R>

- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1\,,\ldots a_K$

First Generation Robots: 1950-1970 NC Technology

- Simple motion capabilities for pick and place applications
- Robots made of revolute joints actuated by open loop or closed loop control.

Motion Planning for an Articulated Robot

Configuration Space of an Articulated Robot

