
Artificial Intelligence

Module 5: Planning

Dr. Chandra Prakash
Assistant Professor

Department of Computer Science and Engineering

(Slides adapted from StuartJ. Russell, B Ravindran, Mausam, Dan Klein and Pieter Abbeel, Partha P Chakrabarti, Saikishor Jangiti
1 2

Main Areas of AI

§ Agent architectures
§ Knowledge representation (including

formal logic)
§ Search, especially heuristic search

(puzzles, games)
§ Planning
§ Reasoning under uncertainty, including

probabilistic reasoning
§ Learning
§ Robotics and perception
§ Natural language processing

Search

Knowledge
rep.Planning

Reasoning
Learning

Agent
Robotics

Perception

Natural
language

... Expert
Systems

Constraint
satisfaction

Planning

• According to Wikipedia:

– “Planning is the process of thinking about an organizing the activities
required to achieve a desired goal.”

3

AI Planning
• Elements of a Planning Problem

– A set of states (worlds) described in terms of
predicates

– A set of actions which transforms some parts of
one world to take us to another world

– An initial world
– A goal in terms of the predicates that must hold

in the final world
• Planning is widely used in robotics and automated

control
• Modern AI explores techniques that combine

planning with machine learning
– Autonomous driving is one of many areas

where such combinations are highly relevant

4

From State Spaces to Predicate Worlds

5

From State Spaces to Predicate Worlds

6

Planning in AI

• The intelligent way to do things

• Given a logical description of

– The world states
– Possible actions
– Initial state
– goal conditions

• Planning :

– Find a sequence of actions (a plan
of actions) that transforms the
initial state to a state where the
goal conditions are satisfied.

7

Real-World Problems: Application

• Agents :
– Search-based problem-solving agent
– Logical planning agent
– Complex/large scale problems?

• Activity Planning for the Mars Exploration
Rovers

• https://www.youtube.com/watch?v=WNrTtt
vdIMc

8

Planning problem

• Find a sequence of actions that achieves a given goal when executed from a given
initial world state

• For the discussion, we consider classical planning environments
– fully observable, deterministic, finite, static and discrete (in time, action, objects and effects)

• Given
– a set of operator descriptions (defining the possible primitive actions by the agent),
– an initial state description, and
– a goal state description or predicate

• Compute a plan, which is
– a sequence of operator instances, such that executing them in the initial state will change the world

to a state satisfying the goal-state description.
• Goals are usually specified as a conjunction of goals to be achieved

9

Planning vs Problem Solving
• Planning agent is very similar to problem solving agent

– Constructs plans to achieve goals, then executes them

• Planning agent is different from problem solving agent in:
– Representation of goals, states, actions

• States/Situations – logical description of the world that allows the agent to reason about

• Goal Conditions – logical sentences vs goal test

• Operators/Actions – transformations on logical sentences that allows the agent to reason about the effects of
actions

– Use of explicit, logical representations

– Way it searches for solutions

• Facilitates divide and conquer strategy – solve subgoals independently

• Planning is more powerful because of the representations and methods used
– States, goals, and actions are decomposed into sets of sentences (usually in first-order logic)

– Search often proceeds through plan space rather than state space (though there are also state-space planners)

– Subgoals can be planned independently, reducing the complexity of the planning problem

10

Problems with Standard Search
• Overwhelmed by irrelevant actions
• Finding a good heuristic function is difficult
• Cannot take advantage of problem

decomposition
• Consider the task: get milk, bananas, and a

cordless drill
– Standard search algorithms seem to fail

miserably
– Why? Huge branching factor & heuristics

• Perfectly decomposable problems are delicious
but rare
– Partial-order planner is based on the

assumption that most real-world problems
are nearly decomposable

– Be careful, working on some subgoal may
undo another subgoal 11

Typical assumptions
• Atomic time:

– Each action is indivisible
• No concurrent actions are allowed

– actions do not need to be ordered with respect to each other in the plan
• Deterministic actions:

– The result of actions are completely determined—there is no uncertainty in their
effects

• Agent is the sole cause of change in the world
• Agent is omniscient:

– Has complete knowledge of the state of the world
• Closed World Assumption:

– everything known to be true in the world is included in the state description.
– Anything not listed is false. 12

Famous Problem Solver Task

• Missionaries and Cannibals

13

Planning-Based Approach to Robot Control

• Job of planner:
– generate a goal to achieve, and then

construct a plan to achieve it from the
current state

• Must define representations of:
– Actions:

• generate successor state descriptions by
defining preconditions and effects

– States:
• data structure describing current situation

– Goals:
• what is to be achieved

– Plans:
• solution is a sequence of actions

14

Planning systems

• Planning systems are problem-solving algorithms that operate on explicit
propositional or relational represenations of states and actions

• These represenatnions make possible the derivation of effective heuristics and
development of powerful and flexible algorithms

• Planning Domain Defination Language (PDDL)
– describes the initial and goal states as conjuctions of literals and actions in term sof their

preconditons and effects .

Goal stack planning: Blocks world
• The blocks world is a micro-world that consists of a table, a set of blocks and a

robot hand.
• Some domain constraints:

– Only one block can be on another block
– Any number of blocks can be on the table
– The hand can only hold one block

• Typical representation:
– ontable(A)
– ontable(C)
– on(B,A)
– handempty
– clear(B)
– clear(C)

General Problem Solver
• The General Problem Solver (GPS) system was an early planner

(Newell, Shaw, and Simon)

• GPS generated actions that reduced the difference between some state
and a goal state

• GPS used Means-Ends Analysis

– Compare what is given or known with what is desired and select a reasonable
thing to do next

– Use a table of differences to identify procedures to reduce types of differences
• GPS was a state space planner: it operated in the domain of state space

problems specified by an initial state, some goal states, and a set of
operations

Situation calculus planning
• Intuition: Represent the planning problem using first-order logic

– Situation calculus lets us reason about changes in the world

– Use theorem proving to “prove” that a particular sequence of actions, when applied to the situation
characterizing the world state, will lead to a desired result

• Initial state: a logical sentence about (situation) S0
– At(Home, S0) ^ ~Have(Milk, S0) ^ ~ Have(Bananas, S0) ^~Have(Drill, S0)

• Goal state:
– (∃s) At(Home,s) ^ Have(Milk,s) ^ Have(Bananas,s) ^Have(Drill,s)

• Operators are descriptions of how the world changes as a result of the agent’s actions:
– ∀(a,s) Have(Milk,Result(a,s)) <=> ((a=Buy(Milk) ^ At(Grocery,s)) � (Have(Milk, s) ^ a~=Drop(Milk)))

• Result(a,s) names the situation resulting from executing action a in situation s.
• Action sequences are also useful: Result'(l,s) is the result of executing the list of actions (l) starting in s:

– (∀s) Result'([],s) = s

– (∀a,p,s) Result'([a|p]s) = Result'(p,Result(a,s))

Situation calculus

• A solution is a plan that when applied to the initial

• state yields a situation satisfying the goal query:

– At(Home,Result'(p,S0))
– ^ Have(Milk,Result'(p,S0))
– ^ Have(Bananas,Result'(p,S0))
– ^ Have(Drill,Result'(p,S0))

• Thus we would expect a plan (i.e., variable assignment through
unification) such as:

– p = [Go(Grocery), Buy(Milk), Buy(Bananas), Go(HardwareStore), Buy(Drill),
Go(Home)]

Non-Linear Planning

• A plan that consists of sub-problems, which are solved simultaneously is said to be a
non-linear plan.

• In case of the goal stack planning, as discussed previously, it poses some problems.
– Achieving a goal could possibly undo any of the already achieved goals and its called as

Sussman`s anomaly.
– In linear planning, just one goal is taken at a time and solved completely before the next one is

taken.
• Example :

– You want to take the car for servicing and have to make an important phone call.
– In case of Linear planning, First you will achieve the goal of making a phone call and then will

take the car for servicing.
– Rather than completing both the tasks in a linear way, after completion of the task 1, as partial

step, i.e., start the car and put on the Bluetooth, then complete the task 2 of phone call and then
finally, complete the task 1 by leaving the car at the service station. This can be an example of
non-linear planning.

Many AI Planners in History

• Well-known AI Planners:

– STRIPS (Fikes and Nilsson, 1971): theoremproving system
– ABSTRIPS (Sacerdoti, 1974): added hierarchy of abstractions
– HACKER (Sussman, 1975): use library of procedures to plan
– NOAH (Sacerdoti, 1975): problem decomposition and plan reordering

STRIPS-Based Approach to Robot Control
• Dartmouth Summer Research Project on Artificial

Intelligence (1956)
• Use first-order logic and theorem proving to plan

strategies from start to goal
• STRIPS language:

• STanford Research Institute Problem Solver
– Classical approach that most planners use
– Lends itself to efficient planning algorithms

• Environment: office environment with specially
colored and shaped objects

• STRIPS planner: developed for this system to
determine the actions of the robot should take to
achieve goals

• Cost of Shakey: $100, 000

Source : http://www.ai.sri.com/shakey/

Planning is an integral part of Automation

• Recommended clip from Charlie Chaplin’s Modern Times to see
what can go wrong:

– https://www.youtube.com/watch?v=n_1apYo6-Ow

– Goal stack planning
– Non-linear planning
– Hierarchical planning

• What we intend to learn:

1. Partial Order Planning
2. GraphPlan and SATPlan

23

Origin of Automation: Replacing Human Muscle Power

• 10,000 BC Stone tools used in early civilization: tools make better tools.
• Design of simple automation (150 BC) moving engine, Herons door etc. in Greece.

• 1780 AD saw the creation of automatic dolls which could write, draw pictures etc.
• Punch cards used in power looms in France in 1801 for manufacture of textiles

Joseph-Marie-Jacquard.
24

Origin of Automation: Replacing Human Muscle Power

• Programmed textile loom: 1801 in France
• Hard Automation in Ford Motor Company 1904

– Idea of transfer lines in which a car was assembled at different
stations.

– First use of hard automation – alignment devices, transfer devices etc.
– 1904 Henry Ford’s mass production of vehicles in the USA.

25

Robot : History

• 1921 Karel Kapec’s play depicting human like
mechanical man - robots.

• 1942 Isaac Asimov first used the term Robotics.
• 1945 master slave manipulator made for radioactive

material handling for the Atom Bomb project.

26

What changed everything?

• Mechanical systems became electro-mechanical

• Microprocessor (1949) : concept of reprogram

– 1950 SHAKY: First robot-Stanford University

– 1952 George Dovel : teach / play back devices for
NC machines/ robots.

27

Clumsy robots to sophisticated humanoids

28

1950 2000 2021

What is the definition of a Robot ?

• To be called a robot, it should do some or all of the following:

– move around
– sense and manipulate the environment.
– display intelligent behavior

• Robots are physical agents that perform tasks by manipulating the
physical world. They are equipped with :

– Effectors : Leg, wheels , joints and grippers etc.
– Sensors : Cameras, radars, lasers and microphone, gyroscopes, strain and

torque sensors, accelerometers etc.

29

Robot Hardware

• Types of robots from hardware prospective

– Anthropomorphic robots : eg. The Terminator
– Manipulators : just robot arms
– Mobile robots : with wheels, legs or rotors to move about the environment
– Quadcopter drones
– Unmanned Aerial Vehicle (UAV)
– Autonomous underwater vehicles (AUV)
– Autonomous car or rovers
– Legged robots

30

Sensing the World
• SENSORS: are the perceptual interface between robot and environment.

• Passive sensors : True observers of the environment
– Cameras, Stereo vision , Kinect (cameras+ structured light projector)

• Active sensors : send energy into the environment; rely on the fact that this energy
is reflected back to the sensor

• Range finders :

• Sonar , scanning lidars , Radar
• Tactile sensors : whiskers, bump panels and touch sensitive skin.

• Location sensors :

– Global Positioning system (GPS) , Differential GPS
• Proprioceptive sensors : inform robot of its own motion

– eg : shaft decoders , odometry, inertial sensors, force sensors or torque sensors
31

Producing Motion

• The mechanism that initiates the motion of an effector is called an actuator
• Electric actuator : used in system with rotational motion like joints on a robot

arm
• Hydraulic actuators
• Pneumatic actuators
• Revolute joints
• Prismatic joints
• Grippers : parallel jaw gripper

32

What is Planning for Robotics?

• Given

– model (states and actions) of the robot(s) MR = <SR,AR>
– a model of the world MW

– current state of the robot s W current

– current state of the world s W current

– cost function C of robot actions
– desired set of states for robot and world G

• Compute a plan π that

– prescribes a set of actions a1 ,…aK in AR the robot should execute
– reaches one of the desired states in G
– (preferably) minimizes the cumulative cost of executing actions a1 ,…aK

33

34

Differences between Robotics and Automation ?
• Robotics focuses on systems incorporating sensors and actuators that operate

autonomously or semi- autonomously in cooperation with humans.
– Environment is partially observable and stochastic.

• Robotics research emphasizes intelligence and adaptability to cope with
unstructured environments.

• Automation research emphasizes efficiency, productivity, quality, and reliability,
focusing on systems that operate autonomously, often in structured environments
over extended periods, and on the explicit structuring of such environments.

Three generations of robotics / engineering

• First generation of robots: simple pick and place devices with no
external sensors.

• Second generation robots: external Sensors (vision, tactile, etc) for
interaction with the environment.

• Third generation robots: intelligence, smart materials, bio , etc.

• Future robots: bio-robots, micro , nano cybogs, aneroids etc.

35 36

First Generation Robots: 1950-1970
NC Technology

Ø Simple motion capabilities for pick and place
applications

Ø Robots made of revolute joints actuated by open
loop or closed loop control.

37

Ø Electronics: smaller, faster and cheaper processors
Ø External sensors : interaction with the environment

- vision

- advanced sensors : gyros, inclination, force, slip.

- advanced controllers : microcontroller, DSP

- speech recognition

- AI

Second Generation of Robots: 1970-1990

38

Third generation robots 1990 - 2000
Ø New materials – smart materials, smart actuators.

Ø Interest in emulating biological design paradigms.

Ø New areas like: Micro, Nano-robotics, Vision, bio-robotics, etc.

Autonomous Robotic Systems

• Autonomous system ?

• Three level hierarchy in robotics :

– Task planning
– Motion planning
– Control

39

40

Motion planning is the ability for an agent to compute its own motions in
order to achieve certain goals.

All autonomous robots and digital actors should eventually have this
ability.

Planning within a Typical Autonomy Architecture

41

Planning vs. Trajectory Following vs. Control

42

Motion Planning Problem

• A special case of more general planning problem

• Goal is to develop techniques that would allow a robot or robots to

automatically decide ow to move from one position or configuration
to another

43

Robot Motion Planning

• Enables an autonomous mobile robot to determine its movements in a cluttered
environment so as to achieve a variety of goals while avoiding collisions.

• The ability of a robot to plan its motions without explicit human guidance is a
basic prerequisite for robotic autonomy.

• Classical robot motion planning–
– planning when the geometry of the robot’s stationary surroundings is known in advance.

• Sensor-based motion planning–
– planning in the presence of a priori unknown or poorly known geometry of the robot’s

surroundings.
– advanced sensor-based planning algorithms, and
– robotic mapping and localization methods.

44

Planning : Robot Motion

• How do you represent the environment?

• How do you find a collision-free path?

• How can you know that it is the best possible path?

• What if you need to find a solution faster?

• How can you ensure that you will always find a path that the robot
can follow with limitations in sensing and actuation?

45

Planning : Robot Motion
• Characterization of a motion planner is according to the problem it solves.
• Robotic planning considers four tasks:

– Navigation
• is the problem of finding a collision-free motion for the robot system from one configuration (or

state) to another.

• The robot could be a robot arm, a mobile robot, or something else.

– Coverage
• is the problem of passing a sensor or tool over all points in a space, such as in demining or painting.

– Localization
• is the problem of using a map to interpret sensor data to determine the configuration of the robot.

– Mapping
• is the problem of exploring and sensing an unknown environment to construct a representation that is

useful for navigation, coverage, or localization.

– Localization and mapping can be combined, as in SLAM (Simultaneous Localization and
Mapping)

47

Planning as Graph Search Problem

• Planning

1. Construct a graph representing the planning problem
2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Planning Representations:

Skeleton- and Grid-based Graphs, Explicit vs. Implicit Graphs

48

Two Classes of Graph Construction Methods

• Skeletonization

– Visibility Graphs [Wesley & Lozano-Perez ’79]
– Voronoi diagrams
– Probabilistic roadmaps

• Cell decomposition

– X-connected grids
– lattice-based graphs

49

Skeletonization-based Graphs

• Visibility Graphs [Wesley & Lozano-Perez ’79]

– based on idea that the shortest path consists of obstacle-free straight line
segments connecting all obstacle vertices and start and goal

– construct a graph by connecting all vertices, start and goal by obstacle-free
straight line segments (graph is O(n2), where n - # of vert.)

50

Visibility Graphs : Skeletonization-based Graphs

• advantages:

– independent of the size of the environment
• disadvantages:

– path is too close to obstacles
– hard to deal with the cost function that is not distance
– hard to deal with non-polygonal obstacles
– hard to maintain the polygonal representation of obstacles
– can be expensive in spaces higher than 2D

51

Voronoi diagram : Skeletonization-based Graphs

• Voronoi diagram [Rowat ’79]

– set of all points that are equidistant to two nearest obstacles (can be
computed O (n log n), where n - # of points that represent obstacles)

52

Skeletonization-based Graphs

• Voronoi diagram-based graph
– Edges: Boundaries in Voronoi diagram

– Vertices: Intersection of boundaries

– Add start and goal vertices

– Add edges that correspond to:

• shortest path segment from start to the nearest segment on the Voronoi diagram

• shortest path segment from goal to the nearest segment on the Voronoi diagram

53

Skeletonization-based Graphs

• Voronoi diagram-based graph

• Advantages:

– tends to stay away from obstacles
– independent of the size of the environment
– can work with any obstacles represented as set of points

• Disadvantages:

– can result in highly suboptimal paths
– hard to deal with the cost function that is not distance
– hard to use/maintain beyond 2D

54

Two Classes of Graph Construction Methods

• Skeletonization

– Visibility Graphs [Wesley & Lozano-Perez ’79]
– Voronoi diagrams
– Probabilistic roadmaps

• Cell decomposition

– X-connected grids
– lattice-based graphs

55

Grid-based Graphs

• Approximate Cell Decomposition:

– overlay uniform grid (discretize)

56

Grid-based Graphs

• Approximate Cell Decomposition:

– construct a graph

57

Grid-based Graphs

• Graph construction:

– connect neighbours
– path is restricted to 45º degrees

• connect cells to neighbor of neighbors

• path is restricted to 22.5º degrees

• path is restricted to 26.6º/63.4º degrees

58

Cell Decomposition-based Graphs

• Grid-based graph

• advantages:

– very simple to implement (super popular)
– can represent any dimensional space
– works well with obstacles represented as set of points
– works with any cost function

• disadvantages:

– size does depend on the size of the environment
– can be expensive to compute/store if # of dimensions > 3

59

2D Planning for Omnidirectional Non-Circular Non-
point Robot

• Planning for omnidirectional point robot:

60

Configuration Space (C- Space)

• Configuration is legal if it does not intersect any obstacles and is
valid

• Configuration Space is the set of legal configurations

61

C-Space Transform

• Configuration space for a robot base in 2D world is:

– 2D if robot’s base is circular

• expand all obstacles by radius r of the robot’s base

• graph construction can then be done assuming point robot

62

2D Planning for Omnidirectional Non-Circular Non-
point Robot

• Planning for omnidirectional point robot:

63

Lattice Graphs [Pivtoraiko & Kelly ’05]

• Graph {V, E} where

– V: centers of the grid-cells
– E: motion primitives that connect centers of cells via short-term feasible

motions

64

Planning on grid

• Robot can move between adjacent
cells on the grid

• Dark part – obstacles

65

AI Problem formulation : Graph Structure

• Graph :

– Node
– Edges

• Annotated with numerical value
• Indicate relevant quantities like

distance or cost

–

66

AI Problem formulation :Delhi metro

67

AI Problem formulation

• Toll chart

• WWW

68

Planning on grid

• Cost or distance of 1 with every edge in
the graph

• Goal is to construct a path through the
grid /graph from the start to the goal

• Many possible paths

• Interested in the shortest path

69

Grassfire :Algorithm

• Grassfire algorithm

• Begin the Goal as distance 0

• Then 1 step from the goal (+1)

70

Grassfire

71

If path not exist

72 73

Basic problem

§ Point robot in a 2-dimensional workspace with
obstacles of known shape and position

§ Find a collision-free path between a start and a goal
position of the robot

74

Basic problem

§ Each robot position (x,y) can be seen as a state

§ ® Continuous state space
§ Then each state has an infinity of successors

§ We need to discretize the state space

(x,y)

75

Path Planning

What is the state space?
76

Formulation #1

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = Ö2

77

Optimal Solution

This path is the shortest in the discretized state
space, but not in the original continuous space

78

Formulation #2- Trapezoidal Decomposition
sweep-line

79

Formulation #2

80

States

81

Successor Function

82

Solution Path

A path-smoothing post-processing step is usually needed to shorten the path further

83

Formulation #3: Visibility Graph

Cost of one step: length of segment
84

Formulation #3

Cost of one step: length of segment

Visibility graph

85

Solution Path

The shortest path in this state space is also the
shortest in the original continuous space

86

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

2 2
g g1 N Nh (N) = (x -x) +(y -y) is admissible

87

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

h2(N) = |xN-xg| + |yN-yg| is ???

88

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

h2(N) = |xN-xg| + |yN-yg| is admissible if moving along
diagonals is not allowed, and
not admissible otherwiseh*(I) = 4Ö2

h2(I) = 8

89

Robot Navigation

90

Robot Navigation

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

5

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)

91

Robot Navigation

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

5

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)

7

0

92

Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A*)

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

57+0

6+1

6+1

8+1

7+0

7+2

6+1

7+2

6+1

8+1

7+2

8+3

7+2 6+36+3 5+45+4 4+54+5 3+63+6 2+7

8+3 7+47+4 6+5

5+6

6+3 5+6

2+7 3+8

4+7

5+6 4+7

3+8

4+7 3+83+8 2+92+9 3+10

2+9

3+8

2+9 1+101+10 0+110+11

93

Best-First Search

§ An evaluation function f maps each node N of the
search tree to a real number
f(N) ³ 0

§ Best-first search sorts the FRINGE in increasing f

94

Robot Navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

2 2
g g1 N Nh (N) = (x -x) +(y -y)

h2(N) = |xN-xg| + |yN-yg|
is consistent

is consistent if moving along
diagonals is not allowed, and
not consistent otherwise

N

N’ h(N)

h(N’)

c(N,N’)

h(N) £ c(N,N’) + h(N’)

95

Two Possible Discretizations
Grid-based Criticality-based

96

Two Possible Discretizations
Grid-based Criticality-based

But this problem is very simple

How do these discretizations scale up?

97

Intruder Finding Problem

§ A moving intruder is hiding in a 2-D workspace

§ The robot must “sweep” the workspace to find the intruder
§ Both the robot and the intruder are points

robot’s
visibility
region

hiding
region 1

cleared region

2 3

4 5 6

robot

98

Does a solution always exist?

99

Does a solution always exist?

Easy to test:
“Hole” in the workspace

Hard to test:
No “hole” in the workspace

No !

Information State

§ Example of an information state = (x,y,a=1,b=1,c=0)

§ An initial state is of the form (x,y,1, 1, ..., 1)

§ A goal state is any state of the form (x,y,0,0, ..., 0)

(x,y)

a = 0 or 1

c = 0 or 1
b = 0 or 1

0 à cleared region
1 à hidding region

100

101

Critical Line

a=0 b=1

a=0 b=1

Information state is unchanged

a=0 b=0

Critical line
102

A

B C D

E

Criticality-Based Discretization

Each of the regions A, B, C, D, and E
consists of “equivalent” positions of the robot,
so it’s sufficient to consider a single position
per region 103

Criticality-Based Discretization

A

B C D

E

(C, 1, 1)

(D, 1)(B, 1)

104

Criticality-Based Discretization

A

B C D

E

(C, 1, 1)

(D, 1)(B, 1)

(E, 1)(C, 1, 0)

105

Criticality-Based Discretization

A

B C D

E

(C, 1, 1)

(D, 1)(B, 1)

(E, 1)(C, 1, 0)

(B, 0) (D, 1)

106

Criticality-Based Discretization

A

C D

E

(C, 1, 1)

(D, 1)(B, 1)

(E, 1)(C, 1, 0)

(B, 0) (D, 1)Much smaller search tree than
with grid-based discretization !

B

107

Grid-Based Discretization

§ Ignores critical lines à Visits many “equivalent” states
§ Many information states per grid point
§ Potentially very inefficient

108

Example of Solution

109

But ...

Criticality-based discretization does not scale well in practice when the
dimensionality of the continuous space increases

(It becomes prohibitively complex to define and compute)

110

Motion Planning for an Articulated Robot

Find a path to a goal configuration that satisfies
various constraints: collision avoidance,
equilibrium, etc...

111

Configuration Space of an Articulated Robot

§ A configuration of a robot is a
list of non-redundant
parameters that fully specify the
position and orientation of each
of its bodies

§ In this robot, one possible
choice is: (q1, q2)

The configuration space
(C-space) has 2 dimensions

112

How many dimensions has the C-space of these 3
rings?

Answer:
3´5 = 15

Every robot maps to a point in its
configuration space ...

q1

q3

q0

qn

q4

12 D

~65-120 D

6 D

15 D ~40 D

113

... and every robot path is a curve in configuration
space

q1

q3

q0

qn

q4 114

But how do obstacles (and other constraints)
map in configuration space?

q1

q3

q0

qn

q4

12 D

~65-120 D

6 D

15 D ~40 D

115

116

C-space “reduces” motion planning to
finding a path for a point

But how do the obstacle
constraints map into
C-space ?

117

A Simple Example:
Two-Joint Planar Robot Arm

Problems:
• Geometric complexity
• Space dimensionality

118

Continuous state space

Discretization

Search

C-space

119

Robots with many joints:
Modular Self-Reconfigurable Robots

(M. Yim) (S. Redon)

Millipede-like robot with 13,000 joints

120

Probabilistic Roadmap (PRM)
feasible spacen-dimensional

C-space
forbidden space

121

Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random

122

Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random

123

Probabilistic Roadmap (PRM)
Sampled configurations are tested for collision (feasibility)

124

Probabilistic Roadmap (PRM)
The collision-free configurations are retained as “milestones” (states)

125

Probabilistic Roadmap (PRM)
Each milestone is linked by straight paths to its k-nearest neighbors

126

Probabilistic Roadmap (PRM)
Each milestone is linked by straight paths to its k-nearest neighbors

127

Probabilistic Roadmap (PRM)
The collision-free links are retained to form the PRM (state graph)

128

Probabilistic Roadmap (PRM)

s

g

The start and goal configurations are connected to nodes of the PRM

129

Probabilistic Roadmap (PRM)
The PRM is searched for a path from s to g

s

g

130

Continuous state space

Discretization

Search A*

131

Why Does PRM Work?

Because most feasible spaces verifies some good
geometric (visibility) properties

132

Why Does PRM Work?
In most feasible spaces, every configuration “sees” a significant fraction of the feasible space

à A relatively small number of milestones and connections between them are sufficient to cover most
feasible spaces with high probability

133

S1 S2

Narrow-Passage Issue

Lookout of S1

The lookout of a subset S
of the feasible space is the
set of all configurations
in S from which it is possible
to “see” a significant
fraction of the feasible
space outside S

The feasible space is
expansive if all of its
subsets have a large
lookout

Issue

134

Rapidly Exploring Random Trees (RRT)

135

Rapidly Exploring Random Trees (RRT)

136

137

In an expansive feasible space, the probability that a PRM planner with
uniform sampling strategy finds a solution path, if one exists, goes to 1
exponentially with the number of milestones (~ running time)

A PRM planner can’t detect that no path exists. Like A*, it must be
allocated a time limit beyond which it returns that no path exists. But
this answer may be incorrect. Perhaps the planner needed more time to
find one !

Probabilistic Completeness of a PRM Motion Planner

138

Continuous state space

Discretization

Search

C-space

139

Some Applications of
Motion Planning

140

Design for Manufacturing and Servicing
General MotorsGeneral Motors

General Electric

141

Automatic Robot Programming

ABB 142

Virtual Angiography

[S. Napel, 3D Medical Imaging Lab. Stanford]

143

Radiosurgery

CyberKnife (Accuray) 144

Planet Exploration

145
[Yamane, Kuffner and Hodgins]

Autonomous Digital Actors

Next :
• Module 6: Reasoning Under Uncertainty

146

References
• Artificial Intelligence by Elaine Rich & Kevin Knight, Third Ed, Tata McGraw Hill
• Artificial Intelligence and Expert System by Patterson
• http://www.cs.rmit.edu.au/AI-Search/Product/
• http://aima.cs.berkeley.edu/demos.html (for more demos)
• Artificial Intelligence and Expert System by Patterson

• Slides adapted from CS188 Instructor: Anca Dragan, University of California, Berkeley

• Slides adapted from CS60045 ARTIFICIAL INTELLIGENCE

147

