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Main Areas of AI

§ Agent architectures
§ Knowledge representation (including 

formal logic)
§ Search, especially heuristic search 

(puzzles, games)
§ Planning
§ Reasoning under uncertainty, including 

probabilistic reasoning
§ Learning
§ Robotics and perception
§ Natural language processing
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Planning 

• According to Wikipedia: 

– “Planning is the process of thinking about an organizing the activities 
required to achieve a desired goal.”
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AI Planning
• Elements of a Planning Problem

– A set of states (worlds) described in terms of 
predicates

– A set of actions which transforms some parts of 
one world to take us to another world

– An initial world
– A goal in terms of the predicates that must hold 

in the final world
• Planning is widely used in robotics and automated 

control
• Modern AI explores techniques that combine 

planning with machine learning
– Autonomous driving is one of many areas 

where such combinations are highly relevant
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From State Spaces to Predicate Worlds
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From State Spaces to Predicate Worlds
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Planning in AI 

• The intelligent way to do things

• Given a logical description of

– The world states
– Possible actions
– Initial state
– goal conditions

• Planning :

– Find a sequence of actions (a plan 
of actions) that transforms the 
initial state to a state where the 
goal conditions are satisfied.
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Real-World Problems: Application

• Agents : 
– Search-based problem-solving agent
– Logical planning agent
– Complex/large scale problems?

• Activity Planning for the Mars Exploration 
Rovers

• https://www.youtube.com/watch?v=WNrTtt
vdIMc
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Planning problem

• Find a sequence of actions that achieves a given goal when executed from a given 
initial world state

• For the discussion, we consider classical planning environments
– fully observable, deterministic, finite, static and discrete (in time, action, objects and effects)

• Given
– a set of operator descriptions (defining the possible primitive actions by the agent),
– an initial state description, and
– a goal state description or predicate

• Compute a plan, which is
– a sequence of operator instances, such that executing them in the initial state will change the world 

to a state satisfying the goal-state description.
• Goals are usually specified as a conjunction of goals to be achieved
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Planning vs Problem Solving
• Planning agent is very similar to problem solving agent

– Constructs plans to achieve goals, then executes them

• Planning agent is different from problem solving agent in:
– Representation of goals, states, actions

• States/Situations – logical description of the world that allows the agent to reason about

• Goal Conditions – logical sentences vs goal test

• Operators/Actions – transformations on logical sentences that allows the agent to reason about the effects of 
actions

– Use of explicit, logical representations

– Way it searches for solutions

• Facilitates divide and conquer strategy – solve subgoals independently

• Planning is more powerful because of the representations and methods used
– States, goals, and actions are decomposed into sets of sentences (usually in first-order logic)

– Search often proceeds through plan space rather than state space (though there are also state-space planners)

– Subgoals can be planned independently, reducing the complexity of the planning problem
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Problems with Standard Search
• Overwhelmed by irrelevant actions
• Finding a good heuristic function is difficult
• Cannot take advantage of problem 

decomposition
• Consider the task: get milk, bananas, and a 

cordless drill
– Standard search algorithms seem to fail 

miserably
– Why? Huge branching factor & heuristics

• Perfectly decomposable problems are delicious 
but rare
– Partial-order planner is based on the 

assumption that most real-world problems 
are nearly decomposable

– Be careful, working on some subgoal may 
undo another subgoal 11

Typical assumptions
• Atomic time: 

– Each action is indivisible
• No concurrent actions are allowed 

– actions do not need to be ordered with respect to each other in the plan
• Deterministic actions: 

– The result of actions are completely determined—there is no uncertainty in their 
effects

• Agent is the sole cause of change in the world
• Agent is omniscient: 

– Has complete knowledge of the state of the world
• Closed World Assumption: 

– everything known to be true in the world is included in the state description. 
– Anything not listed is false. 12

Famous Problem Solver Task

• Missionaries and Cannibals
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Planning-Based Approach to Robot Control

• Job of planner: 
– generate a goal to achieve, and then 

construct a plan to achieve it from the 
current state

• Must define representations of:
– Actions: 

• generate successor state descriptions by 
defining preconditions and effects

– States: 
• data structure describing current situation

– Goals: 
• what is to be achieved

– Plans: 
• solution is a sequence of actions
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Planning systems

• Planning systems are problem-solving algorithms that operate on explicit 
propositional or relational represenations of states and actions 

• These represenatnions make possible the derivation of effective heuristics and 
development of powerful and flexible algorithms 

• Planning Domain Defination Language (PDDL) 
– describes the initial and goal states as conjuctions of literals and actions in term sof their 

preconditons and effects . 

Goal stack planning: Blocks world
• The blocks world is a micro-world that consists of a table, a set of blocks and a 

robot hand.
• Some domain constraints:

– Only one block can be on another block
– Any number of blocks can be on the table
– The hand can only hold one block

• Typical representation:
– ontable(A)
– ontable(C)
– on(B,A)
– handempty
– clear(B)
– clear(C)

General Problem Solver
• The General Problem Solver (GPS) system was an early planner 

(Newell, Shaw, and Simon)

• GPS generated actions that reduced the difference between some state 
and a goal state

• GPS used Means-Ends Analysis

– Compare what is given or known with what is desired and select a reasonable 
thing to do next

– Use a table of differences to identify procedures to reduce types of differences
• GPS was a state space planner: it operated in the domain of state space 

problems specified by an initial state, some goal states, and a set of 
operations

Situation calculus planning
• Intuition: Represent the planning problem using first-order logic

– Situation calculus lets us reason about changes in the world

– Use theorem proving to “prove” that a particular sequence of actions, when applied to the situation 
characterizing the world state, will lead to a desired result

• Initial state: a logical sentence about (situation) S0
– At(Home, S0) ^ ~Have(Milk, S0) ^ ~ Have(Bananas, S0) ^~Have(Drill, S0 )

• Goal state: 
– (∃s) At(Home,s) ^ Have(Milk,s) ^ Have(Bananas,s) ^Have(Drill,s)

• Operators are descriptions of how the world changes as a result of the agent’s actions:
– ∀(a,s) Have(Milk,Result(a,s)) <=> ((a=Buy(Milk) ^ At(Grocery,s)) � (Have(Milk, s) ^ a~=Drop(Milk)))

• Result(a,s) names the situation resulting from executing action a in situation s.
• Action sequences are also useful: Result'(l,s) is the result of executing the list of actions (l) starting in s:

– (∀s) Result'([],s) = s

– (∀a,p,s) Result'([a|p]s) = Result'(p,Result(a,s))



Situation calculus

• A solution is a plan that when applied to the initial

• state yields a situation satisfying the goal query:

– At(Home,Result'(p,S0)) 
– ^ Have(Milk,Result'(p,S0))
– ^ Have(Bananas,Result'(p,S0)) 
– ^ Have(Drill,Result'(p,S0))

• Thus we would expect a plan (i.e., variable assignment through 
unification) such as:

– p = [Go(Grocery), Buy(Milk), Buy(Bananas), Go(HardwareStore), Buy(Drill), 
Go(Home)]

Non-Linear Planning

• A plan that consists of sub-problems, which are solved simultaneously is said to be a 
non-linear plan.

• In case of the goal stack planning, as discussed previously, it poses some problems.
– Achieving a goal could possibly undo any of the already achieved goals and its called as 

Sussman`s anomaly.
– In linear planning, just one goal is taken at a time and solved completely before the next one is 

taken.
• Example : 

– You want to take the car for servicing and have to make an important phone call.
– In case of Linear planning, First you will achieve the goal of making a phone call and then will 

take the car for servicing.
– Rather than completing both the tasks in a linear way, after completion of the task 1, as partial 

step, i.e., start the car and put on the Bluetooth, then complete the task 2 of phone call and then 
finally, complete the task 1 by leaving the car at the service station. This can be an example of 
non-linear planning.

Many AI Planners in History

• Well-known AI Planners:

– STRIPS (Fikes and Nilsson, 1971): theoremproving system
– ABSTRIPS (Sacerdoti, 1974): added hierarchy of abstractions
– HACKER (Sussman, 1975): use library of procedures to plan
– NOAH (Sacerdoti, 1975): problem decomposition and plan reordering

STRIPS-Based Approach to Robot Control
• Dartmouth Summer Research Project on Artificial 

Intelligence (1956)
• Use first-order logic and theorem proving to plan 

strategies from start to goal
• STRIPS language:

• STanford Research Institute Problem Solver
– Classical approach that most planners use
– Lends itself to efficient planning algorithms

• Environment: office environment with specially 
colored and shaped objects

• STRIPS planner: developed for this system to 
determine the actions of the robot should take to 
achieve goals

• Cost of Shakey: $100, 000

Source : http://www.ai.sri.com/shakey/ 

Planning is an integral part of Automation

• Recommended clip from Charlie Chaplin’s Modern Times to see 
what can go wrong:

– https://www.youtube.com/watch?v=n_1apYo6-Ow

– Goal stack planning
– Non-linear planning
– Hierarchical planning

• What we intend to learn:

1. Partial Order Planning
2. GraphPlan and SATPlan
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Origin of Automation: Replacing Human Muscle Power

• 10,000 BC Stone tools used in early civilization: tools make better tools.
• Design of simple automation (150 BC) moving  engine, Herons door etc. in Greece.

• 1780 AD saw the creation of automatic dolls which  could write, draw pictures etc.
• Punch cards used in power looms in France in 1801  for manufacture of textiles 

Joseph-Marie-Jacquard.
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Origin of Automation: Replacing Human Muscle Power

• Programmed textile loom: 1801 in France
• Hard Automation in Ford Motor Company 1904

– Idea of transfer lines in which a car was assembled  at different 
stations.

– First use of hard automation – alignment devices,  transfer devices etc.
– 1904 Henry Ford’s mass production of vehicles in  the USA.
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Robot : History

• 1921 Karel Kapec’s play depicting human like  
mechanical man - robots.

• 1942 Isaac Asimov first used the term Robotics.
• 1945 master slave manipulator made for  radioactive 

material handling for the Atom Bomb  project.
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What changed everything?

• Mechanical systems became electro-mechanical 

• Microprocessor (1949) : concept of reprogram

– 1950 SHAKY: First robot-Stanford University

– 1952 George Dovel : teach / play back devices for 
NC  machines/ robots.
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Clumsy robots to sophisticated humanoids
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1950 2000 2021

What is the definition of a Robot ?

• To be called a robot, it should do some or all of the  following:

– move around
– sense and manipulate the environment.
– display intelligent behavior

• Robots are physical agents that perform tasks by manipulating the 
physical world. They are equipped with :

– Effectors : Leg, wheels , joints and grippers etc.
– Sensors : Cameras, radars, lasers and microphone, gyroscopes, strain and 

torque sensors, accelerometers etc.
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Robot Hardware

• Types of robots from hardware prospective

– Anthropomorphic robots : eg. The Terminator
– Manipulators : just robot arms
– Mobile robots : with wheels, legs or rotors to move about the environment
– Quadcopter drones
– Unmanned Aerial Vehicle (UAV)
– Autonomous underwater vehicles (AUV)
– Autonomous car or rovers
– Legged robots
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Sensing the World
• SENSORS: are the perceptual interface between robot and environment.

• Passive sensors : True observers of the environment
– Cameras, Stereo vision , Kinect (cameras+ structured light projector)

• Active sensors : send energy into the environment; rely on the fact that this energy 
is reflected back to the sensor

• Range finders :

• Sonar , scanning lidars , Radar
• Tactile sensors : whiskers, bump panels and touch sensitive skin.

• Location sensors :

– Global Positioning system (GPS) , Differential GPS
• Proprioceptive sensors : inform robot of its own motion

– eg : shaft decoders , odometry, inertial sensors, force sensors or torque sensors
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Producing Motion

• The mechanism that initiates the motion of an effector is called an actuator
• Electric actuator : used in system with rotational motion like joints on a robot 

arm
• Hydraulic actuators
• Pneumatic actuators
• Revolute joints
• Prismatic joints
• Grippers : parallel jaw gripper
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What is Planning for Robotics?

• Given

– model (states and actions) of the robot(s) MR = <SR,AR>
– a model of the world MW

– current state of the robot s W current 

– current state of the world s W current 

– cost function C of robot actions 
– desired set of states for robot and world G 

• Compute a plan π that 

– prescribes a set of actions a1 ,…aK in AR the robot should execute 
– reaches one of the desired states in G 
– (preferably) minimizes the cumulative cost of executing actions a1 ,…aK
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Differences between Robotics and Automation ?
• Robotics focuses on systems incorporating sensors and actuators that operate

autonomously or semi- autonomously in cooperation with humans.
– Environment is partially observable and stochastic.

• Robotics research emphasizes intelligence and adaptability to cope with
unstructured environments.

• Automation research emphasizes efficiency, productivity, quality, and reliability,
focusing on systems that operate autonomously, often in structured environments
over extended periods, and on the explicit structuring of such environments.

Three generations of robotics / engineering

• First generation of robots: simple pick and place  devices with no 
external sensors.

• Second generation robots: external Sensors (vision,  tactile, etc) for 
interaction with the environment.

• Third generation robots: intelligence, smart  materials, bio , etc.

• Future robots: bio-robots, micro , nano  cybogs, aneroids etc.
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First Generation  Robots: 1950-1970
NC Technology 

Ø Simple motion capabilities for pick and place
applications

Ø Robots made of revolute  joints actuated by open  
loop or closed loop control.
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Ø Electronics: smaller, faster and cheaper processors
Ø External sensors : interaction with the environment

- vision

- advanced sensors : gyros, inclination, force, slip.

- advanced controllers : microcontroller, DSP

- speech recognition

- AI

Second Generation of Robots: 1970-1990
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Third generation robots 1990 - 2000
Ø New materials – smart materials, smart actuators.

Ø Interest in emulating biological design  paradigms.

Ø New areas like: Micro, Nano-robotics, Vision, bio-robotics, etc.

Autonomous Robotic Systems 

• Autonomous system ?

• Three level hierarchy in robotics :

– Task planning
– Motion planning
– Control
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Motion planning is the ability for an agent to compute its own motions in 
order to achieve certain goals. 

All autonomous robots and digital actors should eventually have this 
ability.

Planning within a Typical Autonomy Architecture
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Planning vs. Trajectory Following vs. Control
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Motion Planning Problem 

• A special case of more general planning problem 

• Goal is to develop techniques that would allow a robot or robots to 

automatically decide ow to move from one position or configuration 
to another 
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Robot Motion Planning

• Enables an autonomous mobile robot to determine its movements in a cluttered
environment so as to achieve a variety of goals while avoiding collisions.

• The ability of a robot to plan its motions without explicit human guidance is a
basic prerequisite for robotic autonomy.

• Classical robot motion planning–
– planning when the geometry of the robot’s stationary surroundings is known in advance.

• Sensor-based motion planning–
– planning in the presence of a priori unknown or poorly known geometry of the robot’s

surroundings.
– advanced sensor-based planning algorithms, and
– robotic mapping and localization methods.
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Planning : Robot Motion

• How do you represent the environment? 

• How do you find a collision-free path? 

• How can you know that it is the best possible path? 

• What if you need to find a solution faster? 

• How can you ensure that you will always find a path that the robot 
can follow with limitations in sensing and actuation?
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Planning : Robot Motion
• Characterization of a motion planner is according to the problem it solves.
• Robotic planning considers four tasks:

– Navigation
• is the problem of finding a collision-free motion for the robot system from one configuration (or

state) to another.

• The robot could be a robot arm, a mobile robot, or something else.

– Coverage
• is the problem of passing a sensor or tool over all points in a space, such as in demining or painting.

– Localization
• is the problem of using a map to interpret sensor data to determine the configuration of the robot.

– Mapping
• is the problem of exploring and sensing an unknown environment to construct a representation that is

useful for navigation, coverage, or localization.

– Localization and mapping can be combined, as in SLAM (Simultaneous Localization and
Mapping)
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Planning as Graph Search Problem

• Planning

1. Construct a graph representing the planning problem 
2. Search the graph for a (hopefully, close-to-optimal) path 

The two steps above are often interleaved

Planning Representations: 

Skeleton- and Grid-based Graphs, Explicit vs. Implicit Graphs
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Two Classes of Graph Construction Methods

• Skeletonization 

– Visibility Graphs [Wesley & Lozano-Perez ’79] 
– Voronoi diagrams 
– Probabilistic roadmaps

• Cell decomposition 

– X-connected grids 
– lattice-based graphs
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Skeletonization-based Graphs

• Visibility Graphs [Wesley & Lozano-Perez ’79] 

– based on idea that the shortest path consists of obstacle-free straight line 
segments connecting all obstacle vertices and start and goal

– construct a graph by connecting all vertices, start and goal by obstacle-free 
straight line segments (graph is O(n2 ), where n - # of vert.)
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Visibility Graphs : Skeletonization-based Graphs

• advantages: 

– independent of the size of the environment 
• disadvantages: 

– path is too close to obstacles
– hard to deal with the cost function that is not distance 
– hard to deal with non-polygonal obstacles 
– hard to maintain the polygonal representation of obstacles 
– can be expensive in spaces higher than 2D
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Voronoi diagram : Skeletonization-based Graphs

• Voronoi diagram [Rowat ’79] 

– set of all points that are equidistant to two nearest obstacles (can be 
computed O (n log n), where n - # of points that represent obstacles)
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Skeletonization-based Graphs

• Voronoi diagram-based graph 
– Edges: Boundaries in Voronoi diagram 

– Vertices: Intersection of boundaries 

– Add start and goal vertices

– Add edges that correspond to: 

• shortest path segment from start to the nearest segment on the Voronoi diagram 

• shortest path segment from goal to the nearest segment on the Voronoi diagram
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Skeletonization-based Graphs

• Voronoi diagram-based graph 

• Advantages: 

– tends to stay away from obstacles 
– independent of the size of the environment 
– can work with any obstacles represented as set of points 

• Disadvantages: 

– can result in highly suboptimal paths 
– hard to deal with the cost function that is not distance 
– hard to use/maintain beyond 2D
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Two Classes of Graph Construction Methods

• Skeletonization 

– Visibility Graphs [Wesley & Lozano-Perez ’79] 
– Voronoi diagrams 
– Probabilistic roadmaps

• Cell decomposition 

– X-connected grids 
– lattice-based graphs
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Grid-based Graphs

• Approximate Cell Decomposition: 

– overlay uniform grid (discretize)
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Grid-based Graphs

• Approximate Cell Decomposition: 

– construct a graph
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Grid-based Graphs

• Graph construction: 

– connect neighbours 
– path is restricted to 45º degrees

• connect cells to neighbor of neighbors

• path is restricted to 22.5º degrees 

• path is restricted to 26.6º/63.4º degrees
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Cell Decomposition-based Graphs

• Grid-based graph 

• advantages: 

– very simple to implement (super popular) 
– can represent any dimensional space 
– works well with obstacles represented as set of points 
– works with any cost function

• disadvantages: 

– size does depend on the size of the environment 
– can be expensive to compute/store if # of dimensions > 3
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2D Planning for Omnidirectional Non-Circular Non-
point Robot

• Planning for omnidirectional point robot:
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Configuration Space (C- Space)

• Configuration is legal if it does not intersect any obstacles and is 
valid 

• Configuration Space is the set of legal configurations
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C-Space Transform

• Configuration space for a robot base in 2D world is: 

– 2D if robot’s base is circular

• expand all obstacles by radius r of the robot’s base

• graph construction can then be done assuming point robot
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2D Planning for Omnidirectional Non-Circular Non-
point Robot

• Planning for omnidirectional point robot:
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Lattice Graphs [Pivtoraiko & Kelly ’05]

• Graph {V, E} where 

– V: centers of the grid-cells 
– E: motion primitives that connect centers of cells via short-term feasible 

motions
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Planning on grid 

• Robot can move between adjacent 
cells on the grid 

• Dark part – obstacles 
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AI Problem formulation : Graph Structure 

• Graph : 

– Node 
– Edges

• Annotated with numerical value 
• Indicate relevant quantities like 

distance or cost 

–

66

AI Problem formulation :Delhi metro 
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AI Problem formulation

• Toll chart 

• WWW 
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Planning on grid 

• Cost or distance of 1 with every edge in 
the graph 

• Goal is to construct a path through the 
grid /graph from the start to the goal 

• Many possible paths 

• Interested in the shortest path 
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Grassfire :Algorithm 

• Grassfire algorithm 

• Begin the Goal as distance 0

• Then 1 step from the goal (+1) 
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Grassfire
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If path not exist 
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Basic problem

§ Point robot in a 2-dimensional workspace with 
obstacles of known shape and position

§ Find a collision-free path between a start and a goal 
position of the robot
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Basic problem

§ Each robot position (x,y) can be seen as a state

§ ® Continuous state space
§ Then each state has an infinity of successors

§ We need to discretize the state space

(x,y)
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Path Planning

What is the state space?
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Formulation #1

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = Ö2
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Optimal Solution

This path is the shortest in the discretized state 
space, but not in the original continuous space
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Formulation #2- Trapezoidal Decomposition
sweep-line
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Formulation #2

80

States

81

Successor Function

82

Solution Path

A path-smoothing post-processing step is  usually needed to shorten the path further
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Formulation #3: Visibility Graph

Cost of one step: length of segment
84

Formulation #3

Cost of one step: length of segment

Visibility graph
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Solution Path

The shortest path in this state space is also the 
shortest in the original continuous space 
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Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

2 2
g g1 N Nh (N) = (x -x ) +(y -y ) is admissible

87

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

h2(N)  =  |xN-xg| + |yN-yg| is ???
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Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

h2(N)  =  |xN-xg| + |yN-yg| is admissible if moving along 
diagonals is not allowed, and 
not admissible otherwiseh*(I) = 4Ö2

h2(I) = 8
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Robot Navigation
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Robot Navigation
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f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)
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Robot Navigation
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Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A*)
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Best-First Search

§ An evaluation function f maps each node N of the 
search tree to a real number 
f(N) ³ 0 

§ Best-first search sorts the FRINGE in increasing f
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Robot Navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

2 2
g g1 N Nh (N) = (x -x ) +(y -y )

h2(N)  =  |xN-xg| + |yN-yg|
is consistent

is consistent if moving along 
diagonals is not allowed, and 
not consistent otherwise

N

N’ h(N)

h(N’)

c(N,N’)

h(N) £ c(N,N’) + h(N’)
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Two Possible Discretizations
Grid-based Criticality-based
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Two Possible Discretizations
Grid-based Criticality-based

But this problem is very simple

How do these discretizations scale up?
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Intruder Finding Problem

§ A moving intruder is hiding in a 2-D workspace

§ The robot must “sweep” the workspace to find the intruder
§ Both the robot and the intruder are points

robot’s 
visibility
region

hiding
region 1

cleared region

2 3

4 5 6

robot
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Does a solution always exist?
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Does a solution always exist?

Easy to test: 
“Hole” in the workspace

Hard to test:
No “hole” in the workspace

No !

Information State

§ Example of an information state = (x,y,a=1,b=1,c=0)

§ An initial state is of the form (x,y,1, 1, ..., 1)

§ A goal state is any state of the form (x,y,0,0, ..., 0)

(x,y)

a = 0 or 1

c = 0 or 1
b = 0 or 1

0 à cleared region
1 à hidding region

100
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Critical Line

a=0 b=1

a=0 b=1

Information state is unchanged

a=0 b=0

Critical line
102

A

B C D

E

Criticality-Based Discretization

Each of the regions A, B, C, D, and E 
consists of “equivalent” positions of the robot,
so it’s sufficient to consider a single position
per region 103

Criticality-Based Discretization

A

B C D

E

(C, 1, 1)

(D, 1)(B, 1)
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Criticality-Based Discretization

A

B C D

E

(C, 1, 1)

(D, 1)(B, 1)

(E, 1)(C, 1, 0)
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Criticality-Based Discretization

A

B C D

E

(C, 1, 1)

(D, 1)(B, 1)

(E, 1)(C, 1, 0)

(B, 0) (D, 1)
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Criticality-Based Discretization

A

C D

E

(C, 1, 1)

(D, 1)(B, 1)

(E, 1)(C, 1, 0)

(B, 0) (D, 1)Much smaller search tree than 
with grid-based discretization !

B
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Grid-Based Discretization

§ Ignores critical lines à Visits many “equivalent” states
§ Many information states per grid point 
§ Potentially very inefficient
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Example of Solution
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But ...

Criticality-based discretization does not scale well in practice when the 
dimensionality of the continuous space increases

(It becomes prohibitively complex to define and compute) 
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Motion Planning for an Articulated Robot

Find a path to a goal configuration that satisfies 
various constraints: collision avoidance, 
equilibrium, etc...
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Configuration Space of an Articulated Robot

§ A configuration of a robot is a 
list of non-redundant 
parameters that fully specify the 
position and orientation of each 
of its bodies

§ In this robot, one possible 
choice is: (q1, q2)

The configuration space
(C-space) has 2 dimensions
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How many dimensions has the C-space of these 3 
rings?

Answer:
3´5 = 15

Every robot maps to a point in its 
configuration space ...

q1

q3

q0

qn

q4

12 D

~65-120 D

6 D

15 D ~40 D
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... and every robot path is a curve in configuration 
space

q1

q3

q0

qn

q4 114

But how do obstacles (and other constraints) 
map in configuration space?

q1

q3

q0

qn

q4

12 D

~65-120 D

6 D

15 D ~40 D

115

116

C-space “reduces” motion planning to 
finding a path for a point

But how do the obstacle 
constraints map into 
C-space ?
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A Simple Example: 
Two-Joint Planar Robot Arm

Problems:
• Geometric complexity
• Space dimensionality

118

Continuous state space

Discretization 

Search

C-space
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Robots with many joints: 
Modular Self-Reconfigurable Robots

(M. Yim) (S. Redon)

Millipede-like robot with 13,000 joints
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Probabilistic Roadmap (PRM)
feasible spacen-dimensional

C-space
forbidden space
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Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random
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Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random
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Probabilistic Roadmap (PRM)
Sampled configurations are tested for collision (feasibility)
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Probabilistic Roadmap (PRM)
The collision-free configurations are retained as “milestones” (states)
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Probabilistic Roadmap (PRM)
Each milestone is linked by straight paths to its k-nearest neighbors
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Probabilistic Roadmap (PRM)
Each milestone is linked by straight paths to its k-nearest neighbors
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Probabilistic Roadmap (PRM)
The collision-free links are retained to form the PRM (state graph)
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Probabilistic Roadmap (PRM)

s

g

The start and goal configurations are connected to nodes of the PRM

129

Probabilistic Roadmap (PRM)
The PRM is searched for a path from s to g

s

g
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Continuous state space

Discretization 

Search A*
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Why Does PRM Work?

Because most feasible spaces verifies some good 
geometric (visibility) properties
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Why Does PRM Work?
In most feasible spaces, every configuration “sees” a significant fraction of the feasible space

à A relatively small number of milestones and connections between them are sufficient to cover most 
feasible spaces with high probability
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S1 S2

Narrow-Passage Issue

Lookout of S1

The lookout of a subset S 
of the feasible space is the
set of all configurations 
in S from which it is possible
to “see” a significant 
fraction of the feasible 
space outside S

The feasible space is
expansive if all of its 
subsets have a large 
lookout

Issue 
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Rapidly Exploring Random Trees (RRT) 

135

Rapidly Exploring Random Trees (RRT) 

136
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In an expansive feasible space, the probability that a PRM planner with 
uniform sampling strategy finds a solution path, if one exists, goes to 1 
exponentially with the number of milestones (~ running time)

A PRM planner can’t detect that no path exists. Like A*, it must be 
allocated a time limit beyond which it returns that no path exists. But 
this answer may be incorrect. Perhaps the planner needed more time to 
find one ! 

Probabilistic Completeness of  a PRM Motion Planner
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Continuous state space

Discretization 

Search

C-space
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Some Applications of 
Motion Planning
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Design for Manufacturing and Servicing
General MotorsGeneral Motors

General Electric

141

Automatic Robot Programming

ABB 142

Virtual Angiography

[S. Napel, 3D Medical Imaging Lab. Stanford]

143

Radiosurgery

CyberKnife (Accuray) 144

Planet Exploration

145
[Yamane, Kuffner and Hodgins]

Autonomous Digital Actors



Next : 
• Module 6: Reasoning Under Uncertainty 
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