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Module 6:  Reasoning under Uncertainty

• PART 6.1 : Quantifying Uncertainty 
– Basic of Probability

• PART 6.2 : Probablistic Reasoning 
– Bayes Rule
– Bayesian Network

• PART 6.3 : Fuzzy Logic

• PART 6.4 : Probabilistic Reasoning over time
– Hidden Markov Model
– Kalman filter
– Markov Chain Monte Carlo

• PART 6.5 : Decisions Theory
– Utility Function 
– Decision Network 
– Markov Decision Proces

2

Probability Recap

§ Conditional probability

§ Product rule

§ Chain rule 

§ X, Y independent if and only if:

§ X and Y are conditionally independent given Z if and only if:
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Bayes’ Rule
• Two ways to factor a joint distribution over two variables:

• Dividing, we get:

• Why is this at all helpful?

– Lets us build one conditional from its reverse
– Often one conditional is tricky but the other one is simple
– Foundation of many systems we’ll see later (e.g. ASR etc. )

• In the running for most important AI equation!

That’s my rule!
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Inference with Bayes’ Rule
• Example: Diagnostic probability from causal probability:

• This simple equation underlies all modern AI systems for probabilistic inference

• Example:
– M: meningitis, S: stiff neck

– Note: posterior probability of meningitis still very small
– Note: you should still get stiff necks checked out!  Why?

Example
givens

P (+s|�m) = 0.01

P (+m|+ s) =
P (+s|+m)P (+m)

P (+s)
=

P (+s|+m)P (+m)

P (+s|+m)P (+m) + P (+s|�m)P (�m)
=

0.8⇥ 0.0001

0.8⇥ 0.0001 + 0.01⇥ 0.9999
= 0.007937

P (+m) = 0.0001
P (+s|+m) = 0.8

P (cause|e↵ect) = P (e↵ect|cause)P (cause)

P (e↵ect)
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Inference by Enumeration

• What is the probability of a cavity given a toothache?

• What is the probability of a cavity given the probe catches?

• Example : Joint Distribution 
– Three Random Variables 

• cavity, toothache and catch 

• P(toothache) ? 
=0.108+0.012+0.016+0.064  = 0.20 or 20%

• P(toothache ∨ cavity) ?
= 0.20 + 0.072 + 0.008 = 0.28

• conditional probabilities : P(¬cavity | toothache)  ?
= 0.4 7

Quiz: Bayes’ Rule
• Given:

• What is P(W | dry) ? 

R P
sun 0.8
rain 0.2

D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain 0.3

W P(W | dry)

sun 0.9 * 0.8 / (0.9*0.8 +0.3*0.2)

rain 1- (0.9 * 0.8 / (0.9*0.8 +0.3*0.2))
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Complexity of Enumeration
• Worst case time: O(dn )

– d = maximum arity of the random variables

– n = number of random variables

• Space complexity also O(dn)
– Size of joint distribution

• Problem 
– Hard/impossible to estimate all  O(dn) entries of joint distribution for large 

problems 

– Prohibitive
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Ghostbusters, Revisited
• Let’s say we have two distributions:

– Prior distribution over ghost location: P(G)
• Let’s say this is uniform

– Sensor reading model: P(R | G)
• Given: we know what our sensors do
• R = reading color measured at (1,1)
• E.g. P(R = yellow | G=(1,1)) = 0.1

• We can calculate the posterior distribution P(G|r) over 
ghost locations given a reading using Bayes’ rule:
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Bayes’ Nets

Probabilistic Models

▪ Models describe how (a portion of) the world works

▪ Models are always simplifications
▪ May not account for every variable
▪ May not account for all interactions between variables
▪ “All models are wrong; but some are useful.”

– George E. P. Box

▪ What do we do with probabilistic models?
▪ We (or our agents) need to reason about unknown variables, given evidence
▪ Example: explanation (diagnostic reasoning)
▪ Example: prediction (causal reasoning)
▪ Example: value of information
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Independence derviation 
• A and B are independent iff:

P(A| B) = P(A)

P(B | A) = P(B)

• Therefore, if A and B are independent:
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These two constraints are logically equivalent



▪ Two variables are independent if:

▪ This says that their joint distribution factors into a product two simpler distributions

▪ Another form:

▪ We write: 

▪ Independence is a simplifying modeling assumption

▪ Empirical joint distributions: at best “close” to independent

▪ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence
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Example: Independence?

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
hot sun 0.3
hot rain 0.2
cold sun 0.3
cold rain 0.2

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4

Not Same

Not Independent 
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Example: Independence

▪ N fair, independent coin flips:

H 0.5
T 0.5

H 0.5
T 0.5

H 0.5
T 0.5
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Independence
• A and B are independent iff

• P(A|B)=P(A) or P(B|A)=P(B) or P(A,B)= P(A) P(B)

– P(Tootache, cath, Cavity, Weather)= P(Tootache, cath, Cavity) P (Weather)

• Size of the joint probability distribution table?
– 32 entries reduced to 12; for n indepedent biased coins, 2n→ n

– Factorization 

• Absolute independences are rare.
– Complete independence is powerful but rare What to do if it doesn’t hold?
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Conditional Independence

Weaker Assumption 
18

Conditional Independence

• P(Toothache, Cavity, Catch)

• If I have a cavity, the probability that the probe catches in it doesn't 
depend on whether I have a toothache:

– P(+catch | +toothache, +cavity) = P(+catch | +cavity)

• The same independence holds if I don’t have a cavity:
– P(+catch | +toothache, -cavity) = P(+catch| -cavity)

• Catch is conditionally independent of Toothache given Cavity:
– P(Catch | Toothache, Cavity) = P(Catch | Cavity)

• Equivalent statements:
• P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
• P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
• One can be derived from the other easily
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Conditional Independence

▪ Unconditional (absolute) independence very rare (why?)

▪ Conditional independence is our most basic and robust form of knowledge about 
uncertain environments.

▪ X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if
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Power of Cond. Independence

• Often, using conditional independence reduces the storage 
complexity of the joint distribution from exponential to linear!!

• Conditional independence is the most basic & robust form of 
knowledge about uncertain environments.
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Conditional Independence

▪ What about this domain:

▪ Traffic
▪ Umbrella
▪ Raining

T⍊U/R

▪ Fire
▪ Smoke
▪ Alarm

A⍊S/F

A⍊F/S
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Conditional Independence and the Chain Rule

▪ Chain rule: 

▪ Trivial decomposition:

▪ With assumption of conditional independence:

▪ Bayes’nets / graphical models help us express conditional independence assumptions
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Ghostbusters Chain Rule

▪ Each sensor depends only on where the 
ghost is

▪ That means, the two sensors are 
conditionally independent, given the 
ghost position

▪ T: Top square is red
B: Bottom square is red
G: Ghost is in the top

▪ Givens:
P( +g ) = 0.5
P(  -g ) = 0.5
P( +t  | +g ) = 0.8
P( +t  |  -g ) = 0.4
P( +b | +g ) = 0.4
P( +b |  -g ) = 0.8

P(T,B,G) = P(G) P(T|G) P(B|G)

T B G P(T,B,G)

+t +b +g 0.16
+t +b -g 0.16
+t -b +g 0.24
+t -b -g 0.04
-t +b +g 0.04
-t +b -g 0.24
-t -b +g 0.06
-t -b -g 0.06
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Bayes’Nets (  Bayesian Network ) : Big Picture

In Probabilities, we have seen that random variables can 
be related with joint distribution, conditionality, 
independence, etc.

• However, such relations are defined in a formal 
semantics using a network topology and probabilities

• Bayesian Networks is a field that represents such 
relations systematically

• We explore the use of probability theory to objects and 
relations (like in first-order logic)
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Bayesian Network : Big Picture

▪ Two problems with using full joint distribution tables as our probabilistic models:
▪ Unless there are only a few variables, the joint is WAY too big to represent explicitly
▪ Hard to learn (estimate) anything empirically about more than a few variables at a time

▪ Bayesian Network: a technique for describing complex joint distributions (models) using 
simple, local distributions (conditional probabilities)

▪ Also known as Bayes Nets \ Belief  Network 
▪ More properly called graphical models
▪ We describe how variables locally interact
▪ Local interactions chain together to give global, indirect interactions
▪ For about 10 min, we’ll be vague about how these interactions are specified
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Example Bayesian Network : Insurance

27 Variables 
227= 134 Millions 
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Example Bayes’ Net: Car diagnosis 

16 Variables 
216= 65,000

28

Bayesian Network
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Bayes Nets

• In general, joint distribution P over set of variables (X1 x ... x Xn) 
requires exponential space for representation & inference

• BNs provide a graphical representation of conditional independence 
relations in P
–usually quite compact

–requires assessment of fewer parameters, those being quite natural (e.g., causal)

–efficient (usually) inference: query answering and belief update
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Graphical Model Notation

▪ Nodes: variables (with domains)
▪ Set of random variables
▪ Can be assigned (observed) or unassigned (unobserved)

▪ Arcs: interactions
▪ Indicate “direct influence” between variables
▪ Formally: encode conditional independence (more later)

▪ For now: imagine that arrows mean direct causation (in 
general, they don’t!)

▪ Each node has a conditional probability table that 
quantifies the effects that the parent have on the node.
▪ The graph has no directed cycles. It is a directed acyclic 

graph (DAG).
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Example: Coin Flips

▪ N independent coin flips

▪ No interactions between variables: absolute independence

X1 X2 Xn
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Example: Traffic

▪ Variables:
▪ R: It rains
▪ T: There is traffic

▪ Model 1: independence

▪ Why is an agent using model 2 better?

R

T

R

T

▪ Model 2: rain causes traffic
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▪ Let's build a causal graphical model 

▪ Variables
▪ T: Traffic
▪ R: It rains
▪ L: Low pressure
▪ D: Roof drips
▪ M: Cricket Match
▪ C: Cavity

Example: Traffic II

R

T

D

L

M

C
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Classical Example: Alarm Network
▪ Variables

▪ B: Burglary
▪ A: Alarm goes off
▪ M: Mary calls
▪ J: John calls
▪ E: Earthquake

• Burglar alarm at home
• Fairly reliable at detecting a burglary
• Responds at times to minor earthquakes

• Two neighbors, on hearing alarm, calls police
– John always calls when he hears the alarm, but sometimes 

confuses the telephone ringing with the alarm and calls then, too.
– Mary likes loud music and sometimes misses the alarm 

altogether
35

Bayesian Network Semantics

▪ A set of nodes, one per variable X

▪ A directed, acyclic graph

▪ A conditional distribution for each node

▪ A collection of distributions over X, one for each 
combination of parents’ values

▪ CPT: Conditional Probability Table

▪ Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities
36

Probabilities in Bayesian Network (BNs)

▪ Bayesian Network implicitly encode joint distributions

▪ As a product of local conditional distributions

▪ To see what probability a BN gives to a full assignment, multiply all the relevant conditionals 
together:

▪ Example:

= P(+cavity) P(+catch|+cavity) P(-toothache|+cavity)
37



Why Is the Product Legitimate

▪ Chain rule (valid for all distributions): 

▪ Assume conditional independences: 

Consequence:

▪ Not every BN can represent every joint distribution

▪ The topology enforces certain conditional independencies

▪ T⍊ D/R

R

T

D

38

Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5
t 0.5

h 0.5
t 0.5

h 0.5
t 0.5

X1 X2 Xn

P(h)P(h)P(t)P(h)
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Example: Traffic

R

T

+r 1/4
-r 3/4

+r +t 3/4
-t 1/4

-r +t 1/2
-t 1/2

P(+r)P(-t|+r) = ¼*1/4 
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

E P(E)

+e 0.002

B E A P(A|B,E)

+b +e +a 0.95
+b -e +a 0.94
-b +e +a 0.29
-b -e +a 0.001A J P(J|A)

+a +j 0.9
-a +j 0.05

A M P(M|A)

+a +m 0.7
-a +m 0.01

P(M|A)P(J|A)P
(A|B,E)
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Example: Traffic

▪ Causal direction

R

T

+r 1/4
-r 3/4

+r +t 3/4
-t 1/4

-r +t 1/2
-t 1/2

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16
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Example: Reverse Traffic

▪ Reverse causality?

T

R

+t 9/16
-t 7/16

+t +r 1/3
-r 2/3

-t +r 1/7
-r 6/7

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16
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Causality?

▪ When Bayes’ nets reflect the true causal patterns:
▪ Often simpler (nodes have fewer parents)
▪ Often easier to think about
▪ Often easier to elicit from experts

▪ BNs need not actually be causal
▪ Sometimes no causal net exists over the domain 

(especially if variables are missing)
▪ E.g. consider the variables Traffic and Drips
▪ End up with arrows that reflect correlation, not causation

▪ What do the arrows really mean?
▪ Topology may happen to encode causal structure
▪ Topology really encodes conditional independence
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Bayes’ Nets

▪ So far: how a Bayes’ net encodes a joint 
distribution

▪ Next: how to answer queries about that 
distribution
▪ Today: 

▪ First assembled BNs using an intuitive notion of 
conditional independence as causality

▪ Then saw that key property is conditional independence
▪ Main goal: answer queries about conditional 

independence and influence 

▪ After that: how to answer numerical queries 
(inference)
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Bayes Nets

▪ A Bayes net is an
efficient encoding
of a probabilistic
model of a domain

▪ Questions we can ask:

▪ Inference: given a fixed BN, what is P(X | e)?

▪ Representation: given a BN graph, what kinds of distributions can it encode?

▪ Modeling: what BN is most appropriate for a given domain?

46

Bayes Net Representation

▪ A directed, acyclic graph, one node per random variable

▪ A conditional probability table (CPT) for each node

▪ A collection of distributions over X, one for each combination of parents’ values

▪ Bayes’ nets implicitly encode joint distributions

▪ As a product of local conditional distributions

▪ To see what probability a BN gives to a full assignment, multiply all the relevant conditionals 
together:
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

P(B)

0.001

P(E)

0.002

B E P(A|B,E)

T T 0.95
T F 0.94
F T 0.29
F F 0.001A P(J|A)

T 0.9
F 0.05

A P(M|A)

T 0.7
F 0.01

P(M|A)

P(J|A)

P(A|B,E)

P(~A|~B∧E)

48

Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

P(M|A)

P(J|A)

P(A|B,E)

P(A|~B∧E)

P(A) ?? 

Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example

P(A|~B∧E)
= P(~A|~B∧E). P(~B). P(E)
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The joint probability distribution
• Computation of the probabilities of several different event combinations of the BurglaryAlarm belief network 

example:

• Probalility that alaram go off. 
P(A) = P(A¬B¬E) + P(A¬BE) + P(AB¬E) + P(ABE)
let ¬ = '  
so P(A)=P(AB’E’) + P(AB’E) + P(ABE’) + P(ABE)

= P(A | B’E’).P(B’E’) + P(A | B’E).P(B’E) + P(A | BE’).P(BE’) + P(A | BE).P(BE)
= 0.001 x 0.999 x 0.998 + 0.29 x 0.999 x 0.002 + 0.95 x 0.001 x 0.998 + 0.95 x 0.001 x 0.002
= 0.001 + 0.0006 + 0.0009 = 0.0025

Find 

• P(A’B), 
• P(AE), 
• P(J) , 

• P(AB) ?? 50

Example 
Probability of the event that the alarm 

has sounded but neither a burglary nor 
an earthquake has occurred, and both 

Mary and John call:

P(J ∧ M ∧ A ∧ ¬B ∧ ¬E) = P(JMAB’E’)
Apply joint probability distribution
= P(J | MAB’E’) P(MAB’E’) 
= P(J | A) P(MAB’E’)
= P(J | A) P(M | A) P(AB’E’)
= P(J | A) P(M | A) P(A | B’E’) P(B’E’)
= P(J | A) P(M | A) P(A | B’E’) P(B’) P(E’)
= P(J | A) P(M | A) P(A | ¬B ∧ ¬E) P(¬B) P(¬E)
= 0.9 X 0.7 X 0.001 X 0.999 X 0.998
= 0.00062

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99
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Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ
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Example: Alarm Network

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ

53



More Exercise 
• P(MB) = P(MBA) + P(MBA’)

= P(M | AB).P(AB) + P(M | A’B).P(A’B)
= P(M | A).P(AB) + P(M | A’).P(A’B)

= 0.7 x 0.00095 + 0.01 x 0.00005
= 0.00067

• P(M | B) = P(MB) / P(B) 
= 0.00067 / 0.001 = 0.67

• P(B | J) = P(JB) / P(J) 
= 0.00086 / 0.052125 = 0.016

• P(B | A) = P(AB) / P(A) 
• = 0.00095 / 0.0025 = 0.38

• P(B | AE) = P(ABE) / P(AE) = [ P(A | BE).P(BE) ] / P(AE)
= [ 0.95 x 0.001 x 0.002 ] / 0.00058
= 0.003 54

Other Applications

• Medical Diagnosis

• Computational Biology and Bioinformatics

• Natural Language Processing

• Document classification

• Image processing

• Decision support systems

• Ecology & natural resource management

• Robotics

• Forensic science…
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d-Separation
• Answer independence queries regarding variables in a BN.

– Study independence properties for triples
• Causal chain, common cause and common effect

• Analyze complex cases in terms of member triples
• D-Separation: a condition/algorithm for answering these queries.
• An undirected path between two nodes is “cut off”

– if information cannot flow across one of the nodes in the path
• Two nodes are d-separated

– if every undirected path between them is cut off
• Two sets of nodes are d-separated

– if every pair of nodes, one from each set, is d-separated
• Two sets of nodes are independent

– if they are d-separated
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• Linear connection: 
• Information can flow between A and C if and only if we do have evidence at B

• Diverging connection: 
• Information can flow between A and C if and only if we do not have evidence at B

• Converging connection: 
– Information can flow between A and C if and only if we do have evidence at B or and descendent of B 

(such as D or E)

d-Separation
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d-Separation : Causal Chains

▪ This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

▪ Is it guaranteed  that X independent of Z ?  
▪ No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

▪ In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1
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d-Separation : Causal Chains

▪ This configuration is a “causal chain” ▪ Guaranteed X independent of Z given Y?

▪ Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic

59

d-Separation : Causal Chains

▪ This configuration is a “common cause” ▪ Guaranteed X independent of Z ?  
▪ No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Project due causes both forums busy 
and lab full 

▪ In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy

Z: Lab full
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d-Separation : Causal Chains

▪ This configuration is a “common cause” ▪ Guaranteed X and Z independent given Y?

▪ Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy

Z: Lab full
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Common Effect

▪ Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

▪ Are X and Y independent?

▪ Yes: the Y: Cricket match and the rain cause traffic, 
but they are not correlated

▪ Proof:
X: Raining Y: Cricket match
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Common Effect

▪ Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

▪ Are X and Y independent?

▪ Yes: the Cricket match and the rain cause traffic, but 
they are not correlated

▪ (Proved previously)

▪ Are X and Y independent given Z?

▪ No: seeing traffic puts the rain and the Cricket match 
in competition as explanation.

▪ This is different from the other cases

▪ Observing an effect activates influence between 

possible causes.

X: Raining Y: Cricket match
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The General Case

▪ General question: in a given BN, are two variables independent 
(given evidence)?

▪ Solution: analyze the graph

▪ Any complex example can be broken

into repetitions of the three canonical cases
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Inferences using belief networks
• Diagnostic inferences (from effects to causes)

– Given that JohnCalls, infer that
• P(Burglary | JohnCalls) = 0.016

• Causal inferences (from causes to effects)
– Given Burglary, infer that

• P(JohnCalls | Burglary) = 0.86
• P(MaryCalls | Burglary) = 0.67

• Inter-causal inferences (between causes of a common 
effect)

– Given Alarm, we have P(Burglary | Alarm) = 0.376
– If we add evidence that Earthquake is true, then 

P(Burglary | Alarm ∧ Earthquake) = 0.003
• Mixed inferences

– Setting the effect JohnCalls to true and the cause 
Earthquake to false gives

• P(Alarm | JohnCalls ∧ ¬ Earthquake) = 0.003
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Conditional Independence Relations
• A path is blocked given a set of nodes E if there is a node 

Z on the path for which one of three conditions holds:
1. Z is in E and Z has one arrow on the pat leading in and one 
arrow out (Case a and b)
2. Z is in E and Z has both path arrows leading out (Case c)
3. Neither Z nor any descendant of Z is in E, and both path 
arrows lead in to Z (Case d)

• If every undirected path from a node in X to a node in Y 
is d-separated (blocked) by a given set of evidence nodes 
E, then X and Y are conditionally independent given E.

• A set of nodes E d-separates two sets of nodes X an Y if 
every undirected path from a node in X to a node in Y is 
blocked given E.
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Example

67

C independent of D
A independent of E’ given E
A independent of D
A independent of D given E
A independent of D given B,E

X independent of Y
X independent of Y given Z
X independent of Y given Z’

Conditional Independence in Belief Networks

• Whether there is petrol and whether the radio plays are independent given 
evidence about whether the ignition takes place

• Petrol and Radio are independent if it is known whether the battery works

• Petrol and Radio are independent given no evidence at all.
• But they are dependent given evidence about whether the car starts.

• If the car does not start, then the radio playing is increased evidence that we are 
out of petrol.
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Example: Traffic Domain

• Random Variables
– R: Raining

– T: Traffic

– L: Late!
T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

P (L) = ?

=
X

r,t

P (r, t, L)

=
X

r,t

P (r)P (t|r)P (L|t)
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Inference in multiply connected Belief Networks

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…
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Clustering methods
• Transform the net into a probabilistically equivalent (but topologically 

different) poly-tree by merging offending nodes
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Cutset conditioning Methods

• A set of variables that can be instantiated to yield a poly-tree is 
called a cutset

• Instantiate the cutset variables to definite values
– Then evaluate a poly-tree for each possible instantiation
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Inference in multiply connected belief networks
• Stochastic simulation methods

– Use the network to generate a large number of concrete models of the domain that 
are consistent with the network distribution.

– They give an approximation of the exact evaluation.

– Statistical bias can lead to misleading results – Simpson’s paradox

• Should the drug be administered, 

or not?
73



Simpson’s paradox
• P( recovery | male ∧ given_drug ) = 0.6

• P( recovery | female ∧ given_drug ) = 0.2

• P( recovery | given_drug) 
= P( recovery | male ∧ given_drug )P( given_drug | male ) + P( recovery | female ∧
given_drug )P( given_drug | female )

= (0.6 x 30/40) + (0.2 x 10/40) = 0.5
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Default reasoning

• Some conclusions are made by default unless a counter-evidence is 
obtained 
– Non-monotonic reasoning

• Points to ponder
– What is the semantic status of default rules?

– What happens when the evidence matches the premises of two default rules 
with conflicting conclusions?

– If a belief is retracted later, how can a system keep track of which 
conclusions need to be retracted as a consequence?
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Issues in Rule-based methods for Uncertain Reasoning
• Locality

– In logical reasoning systems, if we have A ⇒ B, then we can conclude B given evidence A, 
without worrying about any other rules. In probabilistic systems, we need to consider all available 
evidence.

• Detachment
– Once a logical proof is found for proposition B, we can use it regardless of how it was derived (it 

can be detached from its justification). In probabilistic reasoning, the source of the evidence is 
important for subsequent reasoning.

• Truth functionality

– In logic, the truth of complex sentences can be computed from the truth of the components. 
Probability combination does not work this way, except under strong independence assumptions.

• A famous example of a truth functional system for uncertain reasoning is the certainty factors model, 
developed for the Mycin medical diagnostic program
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Drawbacks of using Bayesian theory
• The probabilities  are described as a single numeric point value.

– Distortion to precision that is actually available for supporting evidence.
– When we assert with probability 0.7 that the dollar will fall against the Japensese Yen over the next six 

months, what we really mean is we have a fairly strong conviction there is a chance of about 0.6 to 0.8 say, that 
it will fall

• No way to differentiate between ignorance and uncertainty. 
– Example

• One of the three A, B, C terrorist group has planted a bomb. Let C found guilty and P(C) = 0.8. According 
to traditional theory rest of the probability will distributes amongst other without having any knowledege 
about them.

• Forced to regard belief and disbelief as functional opposite.
• Ex. If P(A) = 0.3 then P(~A)= 0.7 so that P(A) + P(~A) =1
• AS A REMEDY FOR THE ABOVE PROBLEMS, GENERALISES THEORY HAS BEEN PROPOSED BY 

ARTHUR DEMPSTER (1968) AND EXTENDED BY STUDENT GLENN SHAFER (1976).
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Dempster-Shafer Theory
• Separate probability masses may be assigned to all subsets of a universe of discourse rather than 

just to individual single members.
– It Permit the inequality P(A) + P(~A) <=1

• It assume a universe of discourse U

• A set corresponding to n proposition, exactly one of which is true.
• The Propositions are assumed to be exhaustive and mutually exclusive. 

• Designed to deal with the distinction between uncertainty and ignorance.
• We use a belief function Bel(X) – probability that the evidence supports the proposition
• When we do not have any evidence about X, we assign Bel(X) = 0 as well as Bel(¬X) = 0

• For example, if we do not know whether a coin is fair, then:
• Bel( Heads ) = Bel( ¬Heads ) = 0

• If we are given that the coin is fair with 90% certainty, then:
• Bel( Heads ) = 0.9 X 0.5 = 0.45
• Bel(¬Heads ) = 0.9 X 0.5 = 0.45

• Note that we still have a gap of 0.1 that is not accounted for by the evidence 78

Fuzzy Logic

• Fuzzy set theory is a means of specifying how well an object satisfies a vague 
description
– Truth is a value between 0 and 1

– Uncertainty stems from lack of evidence, but given the dimensions of a man concluding 
whether he is fat has no uncertainty involved

• The rules for evaluating the fuzzy truth, T, of a complex sentence are:
– T(A ∧ B) = min( T(A), T(B) )

– T(A ∨ B) = max( T(A), T(B) )

– T(¬ A) = 1 − T(A)
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Summary 
• Representation

– Bayes nets compactly encode joint distributions (by making use of conditional independences!) 

– Guaranteed independencies of distributions can be deduced from BN graph structure

– D-separation gives precise conditional independence guarantees from graph alone

– A Bayes net’s joint distribution may have further (conditional) independence that is not 
detectable until you inspect its specific distribution

• Conditional Independences

• Probabilistic Inference

• Enumeration (exact, exponential complexity)
– Variable elimination (exact, worst-case exponential complexity, often better)

– Probabilistic inference is NP-complete

– Sampling (approximate)

• Learning Bayes’ Nets from Data
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Summary 
• Probabilistic reasoning is an integral part of many domains of AI. We intend to study the following in 

future –
– Probabilities reasoning in state machines (Markov Chains)

• Good for modeling dynamical systems, recurrent behavior
• Reinforcement Learning methods work with Markov Decision processes

• You may also look up some of these for further reading –
– Bayesian optimization is an advanced method for automated problem solving under limited knowledge 

of the state space
– Bayesian learning methods are gaining in popularity for making classifiers more important

• Uncertainty needs to be factored into classifiers, so that the classifier can separate out lack of knowledge as one of 
the outcomes

• For example, if a ML classifier is trained to separate wolves from huskies, it should be able to say “I don’t know” 
if presented with the picture of a cat

• Structures like Stochastic AND/OR Graphs are being conceived for explainable AI (XAI)
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Home Work 

• Three candidates run for an election as a major in a city. According to a public 
opinion poll, their chances to win are 0.25, 0.35 und 0.40. The chances that they 
build a bridge after they have been elected are 0.60, 0.90 and 0.80. What is the 
probability that the bridge will be built after the election?

• On an airport all passengers are checked carefully. Let T with t ∈ {0, 1} be the 
random variable indicating whether somebody is a terrorist (t = 1) or not (t = 0). 
Let A with a ∈ {0, 1} be the variable indicating arrest. A terrorist shall be 
arrested with probability P(A = 1|T = 1) = 0.98, a non-terrorist with probability 
P(A = 1|T = 0) = 0.001. One in a lakh passengers is a terrorist, P(T = 1) = 
0.00001. What is the probability that an arrested person actually is a terrorist?
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Home Work 
A smell of sulphur (S) can be caused either by rotten eggs (E) or as a sign of the doom brought by the 
Mayan Apocalypse (M). The Mayan Apocalypse also causes the oceans to boil (B). The Bayesian 
network and corresponding conditional probability tables for this situation are shown below. For each 
part, you should give a numerical answer (e.g. 0.81). We use the short-form E’ to denote the negation of 
E. No marks will be awarded unless intermediate steps are shown

(a) Compute P(E’S’M’B’)
(b) What is the probability that the oceans boil?
(c) What is the probability that the Mayan Apocalypse is occurring, given that the oceans are boiling?
(d) What is the probability that the Mayan Apocalypse is occurring, given that there is a smell of sulphur the oceans are 
boiling, and there are rotten eggs?
(e) What is the probability that rotten eggs are present, given that the Mayan Apocalypse is occurring?

83

Exercise

• P(i1, d0, g2, s1, l0)
= P(i1)P(d0)P(g2 | i1, d0)P(s1 | i1)P(l0 | g2)

= 0.3*0.6*0.08*0.8*0.4

= 0.004608.
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Module 6:  Reasoning under Uncertainty

• PART 6.1 : Quantifying Uncertainty 
– Basic of Probability

• PART 6.2 : Probablistic Reasoning 
– Bayes Rule
– Bayesian Network

• PART 6.3 : Fuzzy Logic

• PART 6.4 : Probabilistic Reasoning over time
– Hidden Markov Model
– Kalman filter
– Markov Chain Monte Carlo

• PART 6.5 : Decisions Theory
– Utility Function 
– Decision Network 
– Markov Decision Proces
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