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Module 6: Reasoning under Uncertainty

PART 6.1 : Quantifying Uncertainty
— Basic of Probability
PART 6.2 : Probablistic Reasoning
— Bayes Rule
— Bayesian Network
PART 6.3 : Rule based methods for uncertain reasoning
— Dempster-Shafer Theory
— Fuzzy Logic
PART 6.4 : Decisions Theory
— Utility Function
— Decision Network
— Markov Decision Proces
PART 6.5 : Probabilistic Reasoning over time
— Hidden Markov Model
— Kalman filter
— Markov Chain Monte Carlo

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid (11) 3
= Walls block the agent’s path (2,2)

Noisy movement: actions do not always go as
planned
= 80% of the time, the action North takes the agent North
(if there is no wall there)
= 10% of the time, North takes the agent West; 10% East
= Ifthere is a wall in the direction the agent would have been
taken, the agent stays put

2

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards




Decision Theory

Steps in Decision Theory

* is the study of agent’s choices

« lays out principles for how an agent arrives at an optimal

choice

— Good decisions may occasionally have unexpected bad outcomes

« it is still a good decision if made properly

— Bad decisions may occasionally have good outcomes if you are

lucky
e it is still a bad decision

1. List the possible actions (actions/decisions)

2. Identify the possible outcomes

3. List the payoff or profit or reward

4. Select one of the decision theory models

5. Apply the model and make your decision

Probabilistic Uncertainty

Utility Function

* Decision makers know the probability of occurrence for each

possible outcome
— Attempt to maximize the expected reward
* Criteria for decision models in this environment:
— Maximization of expected reward
— Minimization of expected regret

* Minimize expected regret = maximizing expected reward!

- Utility
— is a function that maps from states to real numbers.
 Utility of money

— expected monetary value




Decision Network

Grid World Actions

* general mechanism for making rational decisions

* also known as influence diagram

* Decision networks combine Bayesian networks with additional node

type of actions and utilites.
* Represenating a decision problem with a decision network :
— A simple decision network for the airport-siting problem.

* chance node
* decision nodes

« utility nodes

Deterministic Grid
World

Stochastic Grid World

Markov Decision Processes (MDP)

Video of Demo Gridworld Manual Intro

* An MDP is defined by:

— Asetofstates s € S

— Asetofactionsa € A

— A transition function T(s, a, s’)
+ Probability that a from s leads to s, i.e., P(s’| s, a)
+ Also called the model or the dynamics

— A reward function R(s, a, s”)
» Sometimes just R(s) or R(s’)

— A start state

— Maybe a terminal state

* MDPs are non-deterministic search problems
— One way to solve them is with expectimax search
— We’ll have a new tool soon




What is Markov about MDPs?

“Markov” generally means that given the present state, the future
and the past are independent

For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Si41=5"|S; = 54, Ay = ay, Si—1 = 54-1, Ay—1,...S0 = 50)

Policies

* In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

* For MDPs, we want an optimal policy n*: S — A
— A policy & gives an action for each state
— An optimal policy is one that maximizes
expected utility if followed

| G
Eilas

1 2 3 4
Andrey Markov (1856- — An explicit policy defines a reflex agent
P(Si11 = 8|S = s, Ay = ay) 1922) ) . )
Optimal policy when R(s, a, s”) = -0.03
This is just like search, where the successor function could only » Expectimax didn’t compute entire policies for all non-terminals s
depend on the current state (not the history) — It computed the action for a single state only
Optimal Policies Example: Racing
||| ||| * A robot car wants to travel far, quickly

- | - ' - | - |-

R(s) =-0.01 R(s) =-0.03
| | | -l |
= INEE
A

R(s) =-2.0

Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0.5
— Slow :1
— Fast:2

Slow

Overheated




Racing Search Tree

MDP Search Trees

» Each MDP state projects an expectimax-like search tree

AS __—> s is a state

—

@ﬂ’ . (s,a)isa q-stata «

(s,a,s" ) called a transition
T(s,a,8 )=P(s [s,a)

R(s,a,s’ )

N\
I \

Utilities of Sequences

Utilities of Sequences

« Utilities are functions from outcomes (states of the
world) to real numbers that describe an agent’s
preferences

* Where do utilities come from?
— In a game, may be simple (+1/-1)
— Utilities summarize the agent’s goals
* What preferences should an agent have over
reward sequences?
[1,2,3]  or
« More or less? [0-0,1] or

* Now or later?

[3,2,1]
[1,0,0]




Discounting

* It’s reasonable to maximize the sum of rewards
* It’s also reasonable to prefer rewards now to rewards later
* One solution: values of rewards decay exponentially

x{ L
VvV 9 6

1 vy ¥

Worth Now

Worth Next Step Worth In Two Steps

Discounting

* How to discount?

— Each time we descend a level, we
multiply in the discount once

* Why discount? e
— Sooner rewards probably do have
higher utility than later rewards s «
— Also helps our algorithms converge ’y

» Example: discount of 0.5
— U([1,2,3]) = 1¥1 + 0.5%2 + 0.25*3
- U([3,2,1]) 722 /y
- U([1,2,3]) < U([3,2,1]) - TN

Stationary Preferences

* Theorem: if we assume stationary preferences:

2 g
[al,ag,...] >—[b1,b2,...] @ Q
y ) 74

[T7a17a27' . ] >~ [T,bl,bz,. . ]

* Then: there are only two ways to define utilities
— Additive utility:  U([rg,r1,72,...]) =rg+7r1+ 710+ -

— Discounted utility: U([TO’ 1,72, .. ]) =19 + yry + 727“2 Cen

Quiz: Discounting

Given: ‘10| | | | 1 ‘

a b c d e
— Actions: East, West, and Exit (only available in exit states a, )

— 0 rewards in non terminal states
— Transitions: deterministic

Quiz 1: For y = 1, what is the optimal policy? | ’ 10 | | |

|1

It will go West always b q
Cc
Quiz 2: For y = 0.1, what is the optimal policy?

e

« ifatstatec: 0+ vy *1=0.1 ‘10' I I

|1

e ifatstated: 0+ y*0+ y2*0+ y3* 10=0.01

Quiz 3: For which y are West and East equally good when in state d?
* 1N10




Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

= Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (n depends on time left)

= Discounting: use 0 <y <1

(e o]
U([rg,...7mo0]) = > 4're < Rmax/(1 —7)
t=0
= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

* Markov decision processes:

* MDP quantities so far:

— Set of states S
— Set of actions A .
Transitions P(s’[s,a) (or T(s,a,s’)) »
— Rewards R(s,a,s”) (and discount y)
— Start state s,

— Policy = Choice of action for each state

— Utility = sum of (discounted) rewards

— Values = Expected future utility from a state (max node)

— Q-Values = Expected future utility from a g-state (chance node)

Solving MDP

Optimal Quantities

* The value (utility) of a state s:
V*(s) = expected utility starting in s

and acting optimally s is a state

* The value (utility) of a g-state (s,a): e * (s,a)isa g-state

Q7(s,a) = expected utility starting out
having taken action a from state s
and (thereafter) acting optimally

(s,a,s’) is a transition

* The optimal policy:
7"(s) = optimal action from state s
= arg Max Q*(s,a)

Snapshot of Demo — Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise =0
Discount = 1
Living reward =0




Snapshot of Demo — Gridworld Q Values

MMMI

Snapshot of Demo — Gridworld V and Q Values

Snapshot of Demo — Gridworld V and Q Values

Snapshot of Demo — Gridworld V and Q Values

VALUES AFTER 100 ITERATIONS




The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Kegp being optimal

Values of States

* Fundamental operation: compute the (expectimax) value of a state
— Expected utility under optimal action
— Average sum of (discounted) rewards

— This is just what expectimax computed!

e Recursive definition of value:
V*(s) = max Q*(s,a)

Q*(s,a) =Y T(s,a,s) {R(s, a,s) + 'yV*(s')}

V*(s) = mEXZT(s,a, s [R(s, a,s) + 'yV*(s/)}

s/

The Bellman Equations

* Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values 7

V*(s) = maxQ*(s,a)

Q"(5,0) = Y T(s,a,5) [R(s,a,5) + V()]

V*(s) = mgXZT(s, a,s" [R(s, a,s) + V*(s/)]

 These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Racing Search Tree




Racing Search Tree

We’re doing way too much work &

with expectimax! ?‘,/>\‘

Problem: States are repeated - & @
Idea: Only compute needed quantities m ?‘/y\‘ m
once N

& & oS oe &

Problem: Tree goes on forever fl m Q fl fl m

Idea: Do a depth-limited computation, X ‘ ‘
but with increasing depths until change | | | ol i

is small
Note: deep parts of the tree eventually

don’t matter if y <1 i
v \“HN. \\‘\\’\HHH! s\!\\‘\” \\l\\‘\”v“! \s'\\!\“ :tM'

Time-Limited Values

» Key idea: time-limited values

* Define V,(s) to be the optimal value of s if the game ends
in k more time steps
— Equivalently, it’s what a depth-k expectimax would give from s

= Va(é )

VALUES AFTER O ITERATIONS Noise =0.2

Discount = 0.9
Living reward = 0

'

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




VALUES AFTER 2 ITERATIONS

Noise =0.2
Discount = 0.9
Living reward =0

VALUES AFTER 3 ITERATIONS

Noise =0.2
Discount = 0.9
Living reward =0

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0




k=6

Gridworld Display.

VALUES AFTER 6 ITERATIONS

Noise =0.2
Discount = 0.9
Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS

Noise =0.2
Discount = 0.9
Living reward =0

k=8

Gridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0




k=10

Gridworld Display

VALUES AFTER 10 ITERATIONS

Noise =0.2
Discount = 0.9
Living reward =0

k=11

Gridworld Display

VALUES AFTER 11 ITERATIONS

Noise =0.2
Discount = 0.9
Living reward =0

k=12

Gridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

VALUES

k=24

Gridworld Display

AFTER 24 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0




Computing Time-Limited Values

-

Vi(@) Vi(e) ‘/4(“)]
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VALUES AFTER 100 ITERATIONS Dlcount= 09 [Vo(@) Vo( @) Vo(a‘-)] == IR iy

Living reward =0

Value Iteration Value Iteration

+ Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

» Given vector of V(s) values, do one ply of expectimax from each state:

Vi1(s) maaXZ:T(s,a7 s [R(s,a, s+ ”/Vk(s/)}

pe

* Repeat until convergence

+ Complexity of each iteration: O(S2A)

* Theorem: will converge to unique optimal values
— Basic idea: approximations get refined towards optimal values
— Policy may converge long before values do




Value Iteration Example: Value Iteration

* Bellman equations characterize the optimal values:

~ . ( N\
V*(s) = max>_T(s,a,5) [R(s,a,5) +~vV*(5)] v, | 35 25 o0
s’ § J
Slow
. . o e N
* Value iteration computes them: " 5 P 0 . Overheated
/ ’ / - <
Vk+1(s) « maale T(S’ a,s ) {R(S’ a,8 ) + v Vk(s )] Assume no discount!
= s N
Vo 0 0 0 / ’ /
. . .. . . V; 5) < max y T(s,a,s) |R(s,a,s )+ vV,
* Value iteration is just a fixed point solution method \ J beta() g g (50, [Ros0,) 7 Vi)
— ... though the V, vectors are also interpretable as time-limited values
Convergence* Policy Methods
*  How do we know the V, vectors are going to converge? « Different ways to solve same problem

Vi(s) Viet1(s)

* Case 1: If the tree has maximum depth M, then V), holds
the actual untruncated values

* Case 2: If the discount is less than 1

— Sketch: For any state V| and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

— The difference is that on the bottom layer, Vi, has actual
rewards while Vy has zeros

— That last layer is at best all Ryax

— Itis at worst Ry / \ / \

— But everything is discounted by y* that far out

— So V, and V., are at most y* max|R| different

So as k increases, the values converge




Policy Evaluation

Fixed Policies

Do the optimal action Do what & says to do

RN

As’

» Expectimax trees max over all actions to compute the optimal values

» If we fixed some policy n(s), then the tree would be simpler — only one action per state
— ... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s under
a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:

V7(s) = expected total discounted rewards starting in s and following 7t

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,m(s),s") + V7 (s)]

Example: Policy Evaluation

Always Go Right Always Go Forward




Example: Policy Evaluation

Policy Evaluation

Always Go Right Always Go Forward

* How do we calculate the V’s for a fixed policy n?

* Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vg(s)=0

Vk”+1(s) — ZT(S, 7w(s), s)[R(s,w(s),s) + 'kaﬂ(s/)]

« Efficiency: O(S?) per iteration

* Idea 2: Without the maxes, the Bellman equations are just a linear system
— Solve with python (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?

— It’s not obvious!

We need to do a mini-expectimax (one step)

m*(s) = argmax}_T(s,a,s)[R(s,a,5) +~7V*(s)]
a o
This is called policy extraction, since it gets the policy implied by the
values




Computing Actions from Q-Values

* Let’s imagine we have the optimal g-values:

* How should we act?
— Completely trivial to decide!

m*(s) = argmaxQ*(s,a)

* Important lesson: actions are easier to select from g-values than values!

Policy Iteration

Problems with Value Iteration

e Value iteration repeats the Bellman updates:

Vig1(8) maaXZT(s,a, s [R(s,a,s’) + 'ka(s/)]

S

e Problem 1: It's slow — O(S?A) per iteration

e Problem 2: The “max” at each state rarely changes

e Problem 3: The policy often converges long before the values

Policy Iteration

 Alternative approach for optimal values:

— Step 1: Policy evaluation: calculate utilities for some fixed policy (not
optimal utilities!) until convergence

— Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

— Repeat steps until policy converges

* This is policy iteration
— It’s still optimal!
— Can converge (much) faster under some conditions




Policy Iteration

» Evaluation: For fixed current policy 7, find values with policy evaluation:
— Iterate until values converge:

Vi1 (s) « Y T(s,mi(s), ") {R(s, m;(s),s) +~ v,ji(s’)]

» Improvement: For fixed values, get a better policy using policy extraction
— One-step look-ahead:

mi41(s) = arg Crlnaxz:T(s, a,s) [R(s,a, s+ 'yV”z‘(s/)]

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
— Every iteration updates both the values and (implicitly) the policy
— We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
— We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)
— After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
— The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

* So you want to....
— Compute optimal values: use value iteration or policy iteration
— Compute values for a particular policy: use policy evaluation

— Turn your values into a policy: use policy extraction (one-step lookahead)

* These all look the same!
— They basically are — they are all variations of Bellman updates
— They all use one-step look ahead expectimax fragments
— They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

DOUBLE




Double-Bandit MDP Offline Planning

* Actions: Blue, Red * Solving MDPs is offline planning

e States: Win, Lose

No discount No discount
100 time steps — You determine all quantities through computation 100 time steps

Both states have — You need to know the details of the MDP Both states have
the same value the same value

— You do not actually play the game!

s1 Value
1.0 Play Red 150
Play Blue 100
Let’s Play! Online Planning

* Rules changed! Red’s win chance is different.

DOUBLE

2? S0

$§2 82 80 32 $2
$2 32 $0 80 $0




Let’s Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 SO

DOVBLE

What Just Happened?

» That wasn’t planning, it was learning!
— Specifically, reinforcement learning
— There was an MDP, but you couldn’t solve it with just computation

— You needed to actually act to figure it out

* Important ideas in reinforcement learning that came up
— Exploration: you have to try unknown actions to get information
— Exploitation: eventually, you have to use what you know
— Regret: even if you learn intelligently, you make mistakes
— Sampling: because of chance, you have to try things repeatedly
— Difficulty: learning can be much harder than solving a known MDP

Recap: MDPs

* Markov decision processes:
— States S
— Actions A
— Transitions P(s’|s,a) (or T(s,a,s’))
— Rewards R(s,a,s’) (and discount y)
— Start state s,

* Quantities:
— Policy = map of states to actions
— Utility = sum of discounted rewards
— Values = expected future utility from a state (max node)
— Q-Values = expected future utility from a g-state (chance no

de)

Optimal Quantities

* The value (utility) of a state s:
V*(s) = expected utility starting in s
and acting optimally

* The value (utility) of a g-state (s,a): -
Q"(s,a) = expected utility starting out
having taken action a from state s
and (thereafter) acting optimally

* The optimal policy:
7"(s) = optimal action from state s
= argmax Q*(s,a)

sisa
state

(s,a)isa
q-state

(s,a,8”)isa
transition




Gridworld Values V* Policy Iteration

 Alternative approach for optimal values:

— Step 1: Policy evaluation: calculate utilities for some fixed policy (not
optimal utilities!) until convergence

— Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

— Repeat steps until policy converges

AAPAA his s policy feraion

VALUES AFTER 100 ITERATIONS Q-VALUES AFTER 100 ITERATIONS — Can converge (much) faster under some conditions

Next : References
¢ Module 7: Reinforcement Learning *  Artificial Intelligence by Elaine Rich & Kevin Knight, Third Ed, Tata McGraw Hill
— PART 7.1 : Introduction to Leaming *  Artificial Intelligence and Expert System by Patterson

— PART 7.2 : Types of ML
— PART 7.3 : Reinforcement Learning

. Key Concepts ¢ Slides adapted from CS188 Instructor: Anca Dragan, University of California, Berkeley
— PART 7.4 : Model based and model free learning ¢ Slides adapted from CS60045 ARTIFICIAL INTELLIGENCE

— PART 7.5 : TD and Q Learning

(for more demos)

Artificial Intelligence and Expert System by Patterson




