
Artificial Intelligence

Module 7: Reinforcement Learning (PART-I)

Learning from Experience : Learning in human way

Dr. Chandra Prakash
Assistant Professor

Department of Computer Science and Engineering

(Slides adapted from StuartJ. Russell, B Ravindran, Mausam, Dan Klein and Pieter Abbeel, Partha P Chakrabarti,
Saikishor Jangiti

Module 7: Reinforcement Learning

• PART 7.1 : Learning Agent
• PART 7.2 : Introduction to Machine Learning

• PART 7.3 : Types of Machine Learning

• PART 7.4 : Learning from experience :

– Reinforcement Learning

– Background
• PART 7.5 : Model based and Model free learning

• PART 7.6 : TD and Q Learning

• PART 7.7 : RL Applications

2

Agent Architecture Recap

• Simple Reflex Agent
• Model based Agent
• Goal based Agent
• Utility based Agent
• Learning based Agent

• An agent is learning if it improves its performance on future tasks
after making observations about the world

• Learning happens through observations, i.e., Experience or data, etc.

What is Learning?
• Learning is an important area in AI, perhaps more so than planning.

– Problems are hard -- harder than planning.

– Recognised Solutions are not as common as planning.

– A goal of AI is to enable computers that can be taught rather than programmed.

• Learning is an area of AI that focusses on processes of self-improvement.

• Information processes that improve their performance or enlarge their knowledge bases
are said to learn.

• Why is it hard?
– Intelligence implies that an organism / machine must be able to adapt to new situations.

– It must be able to learn to do new things.

– This requires knowledge acquisition, inference, updating/refinement of knowledge base, acquisition of
heuristics, applying faster searches, etc.

How can we learn?
• Skill refinement

– one can learn by practicing, e.g playing the
piano.

• Knowledge acquisition
– one can learn by experience and by storing the

experience in a knowledge base.
– One basic example of this type is rote learning

(process of memorizing information based on
repetition).

• Problem Solving

– if we solve a problem one may learn from this
experience. The next time we see a similar
problem we can solve it more efficiently.

– not usually involve gathering new knowledge
but may involve reorganisation of data or
remembering how to achieve to solution.

• Taking advice
– Similar to rote learning although the knowledge that

is input may need to be transformed (or
operationalised) in order to be used effectively.

• Induction

– One can learn from examples. Humans often classify
things in the world without knowing explicit rules.
Usually involves a teacher or trainer to aid the
classification.

• Discovery
– Here one learns knowledge without the aid of a

teacher.
• Analogy

– If a system can recognise similarities in information
already stored then it may be able to transfer some
knowledge to improve to solution of the task in hand.

Learning Agents

Why Learning ???
• The agent designer cannot anticipate all

possible world states the agent need to handle
and code them in the agent environment
– E.g., A robot designed to navigate mazes

need to learn the layout of new maze
whenever encountered

• The agent designer cannot anticipate all
changes over time
– E.g., Stock market prediction

• Sometimes the agent designer have no idea how
to program a solution
– E.g., Stock market prediction

• Four conceptual components

– Learning element

• Making improvement

– Performance element

• Selecting external actions

– Critic

• Tells the Learning element how well the
agent is doing with respect to fixed
performance standard.

• (Feedback from user or examples, good or
not?)

– Problem generator

• Suggest actions that will lead to new and
informative experiences.

6

Learning Agents

7

AI- ML Terminology

Slide credit : Dr. Partha Pratim Chakrabarti

9

Introduction

Machine learning: Definition
q A scientific discipline that is concerned with the design and

development of algorithms that allow computers to learn based on
data, such as from sensor data or databases, etc.

Major focus of machine learning research
ü To automatically learn to recognize complex

patterns and make intelligent decisions based on data .

9

What is Machine learning:

Can You Recognize these Pictures ?

• If Yes, How do you Recognize it?
Image or a sculpture ???

Learning

Learning is constructing or modifying representations of what
is being experienced. -- McCarthy, 1968

Learning

बायां हाथ दायाँ हाथ ??????
?

Machine learning Type:

With respect to the feedback type to learner:

q Supervised learning :
n Task Driven (Classification)

q Unsupervised learning :
n Data Driven (Clustering)

q Reinforcement learning
n Self learning (reward based)

14

Supervised learning

Testing:
What is this?

Cars Motorcycles
qLinear regression
qLogistic regression
qPerceptron
qNaive Bayes
qNeural Networks
qDecision trees; K-Nearest Neighbor
qSupport Vector Machine (SVM)

Supervised learning

Brains in Nature Artificial Neural Network

• Consists of a number of very simple processors, also called neurons,

– Analogous to the biological neurons in the brain.

• Neurons are connected by weighted links passing signals from one neuron to another.

• The output signal is transmitted through the neuron’s outgoing connection.

• The outgoing connection splits into a number of branches that transmit the same signal.

– The outgoing branches terminate at the incoming connections of other neurons in the network.

Source: Wikipedia

Real time problem –
DATA available/unavailable – not what to do ??

How to proceed ???

How to proceed ???
Based on Shape Based on Color

Un-Supervised learning

Unlabeled images (all cars/motorcycles)

Which Group
It belongs to ??

Group A Group B

Supervised VS Unsupervised

Reinforcement/Self Learning

80 40

Unlabeled images (random internet images)

Testing:
What is this?

DATA Vision and Deep Learning

Reinforcement Learning Examples Deep Reinforcement Learning

• ATARI 2600

• Alpha Go

• Mnih, V. (2013). Playing atari with deep reinforcement learning Silver,

• D. (2016). Mastering the game of Go with deep neural networks and tree search

• Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments

Supervised Learning

• It’s all “supervised” by a loss function!

Supervision*

• *Someone has to say what’s good and what’s bad

Neural
NetworkInput Output

Good or
Bad?

• At a high-level, neural networks are either encoders, decoders, or a combination of both:

– Encoders find patterns in raw data to form compact, useful representations.
– Decoders generate high-resolution data from those representations. The generated data is either new

examples or descriptive knowledge.

Deep learning - representation learning: the automated formation of useful representations from data.

• Supervised learning is “teach by example”:
Here’s some examples, now learn patterns in these example.

• Reinforcement learning is “teach by experience”:
Here’s a world, now learn patterns by exploring it.

Reinforcement

Dictionary meaning
Occurrence of an event, in the proper relation to a response, that tends to
increase the probability that the response will occur again in the same
situation.

Reinforcement Learning (RL)
“a way of programming agents by reward and punishment without
needing to specify how the task is to be achieved”

[Kaelbling, Littman,& Moore, 96]

• Imagine playing a new game whose rules we don’t know; after a
hundred or so moves, the referee tells that you lose.

• From the point of view as designers of AI systems
– Providing a reward signal to the agent is usually much easier than providing

labeled examples of how to behave.

– Reward function is often very concise and easy to specify

– We don’t have to be experts, capable of supplying the correct action in any
situation.

35

Reinforcement Learning (Cont..)

n Emphasizes learning feedback that evaluates the learner's performance without providing
standards of correctness in the form of behavioral targets.

n Some researcher consider RL a form of unsupervised learning.
n An orthogonal approach for Learning Machine. :

n RL is training by

n rewards and punishments.
n Good vs Bad

n RL agent learns by receiving a reward or reinforcement through trial-and-error interactions with a
dynamic environment to achieve a goal, without any form of supervision other than its own
decision-making policy.

n Reinforcement Learning is learning how to act in order to maximize a numerical reward.

35

Reinforcement Learning in Humans
• Human appear to learn to walk through “very few examples” of trial and error. How is

an open question…

• Possible answers:
• Hardware: 230 million years of bipedal movement data.
• Imitation Learning: Observation of other humans walking.
• Algorithms: Better than backpropagation and stochastic gradient descent

Reinforcement Learning (RL)
• Close to Human Learning.
• Agent learns a policy of how to act in a given environment.
• Every action has some impact in the environment, and the environment provides

rewards that guides the learning algorithm

Study Time as a Self Learning Model

Left Right Straight

Left 2 4 8

Right 3 1 7

Straight 6 11 50

More Example (Experiment by Pavlov)
Pavlov and his Dog

Source : https://www.youtube.com/watch?v=hhqumfpxuzI&t=34s

• Early Results:
• Classical (Pavlovian) conditioning experiments
• Training: Bell→Food
• After: Bell → Salivate
• Conditioned stimulus (bell) predicts future reward (food)

RL and Animal Foraging

• RL studied experimentally for more than 80 years in psychology and
brain science
– Rewards: food, pain, hunger, drugs, etc.

– Evidence for RL in the brain via a chemical called dopamine

• Example: foraging
– Bees can learn near-optimal foraging policy in field of artificial flowers with

controlled nectar supplies

Reinforcement Learning Framework

At each step, the agent:

• Executes action

• Observe new state

• Receive reward

• intrinsic rewards - food

• Extrinsic rewards- money

Open Questions:

• What cannot be modeled in
this way?

• What are the challenges of
learning in this framework?

43

Element of Reinforcement Learning

Agent

Environment

State

Reward
Action

Policy

n Agent: Intelligent programs
n Environment: External

condition
n Policy:

n Agent’s behavior at a given
time

n A mapping from states to
actions

n Lookup tables or simple
function

n Reward function :

q Defines the goal in an RL
problem

q Policy is altered to achieve

this goal

q Feedback that measures the

sucess or failure of the

agent's action

nValue function:

qSpecifies what is good in the long run while Reward
function indicates what is good in an immediate sense.
qValue of a state - Total amount of reward an agent can
expect to accumulate over the future, starting form that
state.

nModel of the environment :
qUsed for planning & if Know current state and action
then predict the resultant next state and next reward.

Reinforcement Learning

• Basic idea:
– Receive feedback in the form of rewards
– Agent’s utility is defined by the reward function
– Must (learn to) act so as to maximize expected rewards
– All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Environment and Actions
• Fully Observable (Chess) vs Partially Observable (Poker)

• Single Agent (Atari) vs Multi Agent (DeepTraffic)
• Deterministic (Cart Pole) vs Stochastic (DeepTraffic)

– Deterministic system - no randomness is involved in the development of future states of the system.

– Stochastic system - random probability distribution or pattern that may be analysed statistically but
may not be predicted precisely.

• Static (Chess) vs Dynamic (DeepTraffic)

• Discrete (Chess) vs Continuous (Cart Pole)

Note: Real-world environment might not technically be stochastic or partially-observable but might
as well be treated as such due to their complexity.

Learning vs Inference

• Batch setting in Bayes Nets
– Data → Model → Prediction

• Active setting in MDPs
– Action → Data → (Model ?)

• Actions have two purposes
– To maximize reward

– To learn the model

Reinforcement Learning Vs MDP

• Still assume a Markov decision process (MDP):
– A set of states s Î S

– A set of actions (per state) A

– A model T(s,a,s’)
– A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R
– I.e. we don’t know which states are good or what the actions do

– Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Major Components of an RL Agent

An RL agent may be directly or indirectly trying to learn a:

• Policy: agent’s behavior function

• Value function: how good is each state and/or action

• Model: agent’s representation of the environment

!0,"0,#1, !1,"1,#2,………,!!−1,"!−1,#!, !!
state Terminal state

action

reward

Main dimension in RL

Model-based vs. Model-free
• Model-based: learn the model (T, R)

• Model-free: directly learn what action to do when

Passive vs. Active
• Passive: learn state values evaluating a given policy

• Active: need to learn both optimal policy + state values

Strong vs Weak simulator
• Strong: can jump to any part of state space and simulate

• Weak: real world; can’t teleport
51

Dynamic programming
Model-based

Monte Carlo methods
No Model

Temporal-difference learning.

Passive Reinforcement Learning Passive Reinforcement Learning

• Simplified task: policy evaluation
– Input: a fixed policy p(s)
– You don’t know the transitions T(s,a,s’)
– You don’t know the rewards R(s,a,s’)
– Goal: learn the state values

• In this case:
– Learner is “along for the ride”
– No choice about what actions to take
– Just execute the policy and learn from experience
– This is NOT offline planning! You actually take actions in the world.

Passive Learning : Direct Evaluation

• Goal: Compute values for each state under p

• Idea: Average together observed sample values
– Act according to p
– Every time you visit a state, write down what the

sum of discounted rewards turned out to be

– Average those samples

• This is called direct evaluation
• Reward +1 at [4,3], -1 at [4,2]

• Reward -0.04 for each step

• What’s the strategy to achieve max reward?
• We can learn the model and plan

• We can learn the value of (action, state) pairs and act greed/non-greedy

• We can learn the policy directly while sampling from it

actions: UP, DOWN, LEFT, RIGHT

(Stochastic) model of the world:

Action: UP

80% move UP
10% move LEFT
10% move RIGHT

Polcity Selection for Robot in a Room

+1

-1

START

Optimal Policy for a Deterministic World

Reward: -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

When actions are deterministic:

UP

100% move UP
0% move LEFT
0% move RIGHT

Policy: Shortest path.

+1

-1

Optimal Policy for a Stochastic World

Reward: -0.04 for each step

+1

-1

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80%
10%
10%

move UP
move LEFT
move RIGHT

Policy: Shortest path. Avoid -UP around -1 square.

Optimal Policy for a Stochastic World

Reward: -2 for each step

+1

-1

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80%
10%
10%

move UP
move LEFT
move RIGHT

Policy: Shortest path.

Optimal Policy for a Stochastic World

Reward: -0.1 for each step

+1

-1

+1

-1

Reward: -0.04 for each step

Less urgentMore urgent

Optimal Policy for a Stochastic World

Reward: +0.01 for each step

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

UP

80%
10%
10%

move UP
move LEFT
move RIGHT

Policy: Longest path.

+1

-1

Lessons from Robot in Room

• Environment model has big impact on optimal policy

• Reward structure has big impact on optimal policy

Reinforcement Learning (Cont..)

n Concept used in Reinforcement Learning

q Evaluative Vs. Instructive Feedback
q Associative Vs. Non-Associative
q Exploration and exploitation

63

Action Selection Method

Exploration and exploitation
A. Greedy action: Action chosen with greatest estimated value.
Greedy action: a case of Exploitation.

n Ɛ -greedy
q Most of the time the greediest action is chosen
q Every once in a while, with a small probability Ɛ, an action is selected at random.

B. Non-Greedy action: a case of Exploration, as it enables us to improve
estimate the non-greedy action's value.
n Ɛ -soft - The best action is selected with probability (1 –Ɛ) and the rest of the time

a random action is chosen uniformly.

63

64

Ɛ-Greedy Action Selection Method :

Let the a* is the greedy action at time t and Qt(a) is the value of action a at
time.

Greedy Action Selection:

n Ɛ –greedy

64

Î
Î-

y probabilith action wit random
1y probabilit with ta{at=

at = at
* = argmax

a
Qt(a)

Exploration vs Exploitation
• Deterministic/greedy policy won’t explore all actions

• Don’t know anything about the environment at the beginning
• Need to try all actions to find the optimal one

• ε-greedy policy
• Every once in a while, with a small probability Ɛ, an action is selected at random.
• Ɛ -soft : With probability 1-ε perform the optimal/greedy action, otherwise random action
• Slowly move it towards greedy policy: ε -> 0

Action Selection Policies (Cont…)

n Softmax –
q Drawback of Ɛ -greedy & Ɛ -soft: Select random actions uniformly.
q Softmax remedies this by:

n Assigning a weight with each actions, according to their action-
value estimate.

n A random action is selected with regards to the weight associated
with each action

n The worst actions are unlikely to be chosen.
n This is a good approach to take where the worst actions are very

unfavorable.

66

Softmax Action Selection(Cont…)

n Problem with Ɛ-greedy: Neglects action values

n Softmax idea: grade action probs. by estimated values.

n Gibbs, or Boltzmann action selection, or exponential weights:

t is the “computational temperature”

At tà 0 the Softmax action selection method become
the same as greedy action selection.

67

68

Some terms in Reinforcement Learning

n The Agent Learns a Policy:
q Policy at step t, : a mapping from states to action probabilities will

be:

q Agents changes their policy with Experience.
q Objective: get as much reward as possible over a long run.

n Goals and Rewards
q A goal should specify what we want to achieve, not how we want to

achieve it.

68

Meaning of Life for RL Agent:
Maximize Reward

• Future reward: !! = "!+ "!+1 + "!+2 + ⋯ +""
• Discounted future reward:

!! = "!+ $"!+1 + $2"!+2 + ⋯ +$"−!""
• A good strategy for an agent would be to always choose an action that

maximizes the (discounted) future reward

• Why “discounted”?

• Math trick to help analyze convergence

• Uncertainty due to environment stochasticity, partial observability, or that
life can end at anymoment:

“If today were the last day of my life, would I want to do what I’m
about to do today?” – Steve Jobs

Some terms in RL (Cont…)

n Returns
q Rewards in long term
q Episodes: Subsequence of interaction between agent-environment

e.g., plays of a game, trips through a maze.
n Discount return

q The geometrically discounted model of return:

q Used to:
n to make future rewards less important than immediate rewards
n enforce short time learning in agent
n To determine the present value of the future rewards
n Give more weight to earlier rewards

70

UPDATE Rule

n Common update rule form:

NewEstimate = OldEstimate + StepSize[Target –OldEstimate]

n The expression [Target - Old Estimate] is an error in the estimate.

n It is reduce by taking a step toward the target.

n In proceeding the (t+1)st reward for action a the step-size parameter will be 1\(t+1).

71

72

Value function

n States-action pairs function that estimate how good it is for the agent to be in a given state
n Type of value function

q State-Value function

q Action-Value function

72

Examples of Reinforcement Learning

Cart-Pole Balancing
• Goal — Balance the pole on top of a moving cart

• State — Pole angle, angular speed. Cart position, horizontal velocity.

• Actions — horizontal force to the cart

• Reward — 1 at each time step if the pole is upright

Identify :- G S A R ???

Examples of Reinforcement Learning

Grasping Objects with Robotic Arm
• Goal - Pick an object of different shapes

• State - Raw pixels from camera

• Actions – Move arm. Grasp.

• Reward - Positive when pickup is successful

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot Next Time

3 Types of Reinforcement Learning

Artificial Intelligence

Module 7: Reinforcement Learning (PART-II)

Learning from Experience : Learning in human way

Module 7: Reinforcement Learning

• PART 7.1 : Learning Agent
• PART 7.2 : Introduction to Machine Learning

• PART 7.3 : Types of Machine Learning

• PART 7.4 : Learning from experience :

– Reinforcement Learning

– Background
• PART 7.5 : Model based and Model free learning

• PART 7.6 : TD and Q Learning

• PART 7.7 : RL Applications

79

Learning/Planning / Acting

• d

3 Types of Reinforcement Learning

Model-based
• Learn the model of the

world, then plan using the
model

• Update model often

• Re-plan often

Value-based
• Learn the state or

state-action value

• Act by choosing best
action in state

• Exploration is a
necessary add-on

Policy-based
• Learn the stochastic policy

function that maps state to
action

• Act by sampling policy

• Exploration is baked in

Example: Expected Age
Goal: Compute expected age of CS 210 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work?
Because samples
appear with the
right frequencies.

Why does this

work?

Because eventually

you learn the right

model.

Reinforcement Learning Methods

• Model-based
– Learn an empirical model

– Solve for Vp using policy evaluation

• assuming that the learned model is correct

– Learning the model
• maintain estimates of T(s,a,s’)

• maintain estimates of R(s,a,s’)

– Dynamic programming

• Model-Free
– Monte Carlo methods

• Hybrid
– Temporal-difference learning.

84

1.Dynamic programming

n Classical solution method

n Require a complete and accurate model of the environment.
n Popular method for Dynamic programming

q Policy Evaluation : Iterative computation of the value function
for a given policy (prediction Problem)

q Policy Improvement: Computation of improved policy for a
given value function.

84

{ })()(1 ttt sVrEsV gp +¬ +

NewEstimate = OldEstimate + StepSize[Target – OldEstimate]

Model-Based Learning
• Model-Based Idea:

– Learn an approximate model based on experiences
– Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model

– Count outcomes s’ for each s, a
– Normalize to give an estimate of
– Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP

– For example, use value iteration, as before

Example: Model-Based Learning

Input Policy
p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x,+10

B, east, C, -1
C, east, D, -1
D, exit, x,+10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Exercise

Data on Executing p

Generalized Policy Iteration (GPI)
Consist of two iteration process,
n Policy Evaluation :Making the value function consistent with the

current policy
n Policy Improvement: Making the policy greedy with respect to the

current value function

88 89

2. Monte Carlo Methods
n Features of Monte Carlo Methods

q No need of Complete knowledge of environment
q Based on averaging sample returns observed after visit to that state.

q Experience is divided into Episodes
q Only after completing an episode, value estimates and policies are

changed.

q Don't require a model
q Not suited for step-by-step incremental computation

89

Model-Free Learning

• Model-free (temporal difference) learning
– Experience world through episodes

– Update estimates each transition

– Over time, updates will mimic Bellman updates

r

a
s

s, a

s’
a’

s’, a’

s’’

91

MC and DP Methods

n Compute same value function

n Same step as in DP
q Policy evaluation

q Computation of state value (VΠ) and action value (QΠ)for a fixed
arbitrary policy (Π).

q Policy Improvement

q Generalized Policy Iteration

91

92

To find value of a State

n Estimate by experience, average the returns observed after visit to that
state.

n More the return, more is the average converge to expected value

92

Monte Carlo conrol

9393

94

Monte Carlo and Dynamic Programming

n MC has several advantage over DP:
q Can learn from interaction with environment
q No need of full models
q No need to learn about ALL states
q No bootstrapping

n bootstrapping in RL means that you update a value based on
some estimates and not on some exact values.

94

Direct Evaluation

C= 9+9+9-11/4 = 4

Problems with Direct Evaluation

• What’s good about direct evaluation?
– It’s easy to understand

– It doesn’t require any knowledge of T, R

– It eventually computes the correct average values,
using just sample transitions

• What bad about it?
– It wastes information about state connections
– Each state must be learned separately

– So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

99

3. Temporal Difference (TD) methods
n Learn from experience, like MC

q Can learn directly from interaction with environment
q No need for full models

n Estimate values based on estimated values of next states, like DP
n Bootstrapping (like DP)
n Issue to watch for:

q maintaining sufficient exploration

99

Temporal Difference Learning
• Big idea: learn from every experience!

– Update V(s) each time we experience a transition (s, a, s’, r)

– Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
– Policy still fixed, still doing evaluation!

– Move values toward value of whatever successor occurs: running average

p(s)

s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

101

Temporal Difference (TD) Prediction

[])V(sRα+)V(s)V(s tttt -¬
:method Carlo Montevisit -every Simple

Policy Evaluation (the prediction problem):
for a given policy p, compute the state-value function

V p

[])V(s)V(s+rα+)V(s)V(s
:)(

t+t+ttt -¬ 11

0TD method, TDsimplest The
g

target: the actual return after time t

target: an estimate of the return
101

Active Reinforcement Learning

• Full reinforcement learning: optimal policies (like value iteration)
– You don’t know the transitions T(s,a,s’)
– You don’t know the rewards R(s,a,s’)
– You choose the actions now
– Goal: learn the optimal policy / values

• In this case:
– Learner makes choices!
– Fundamental tradeoff: exploration vs. exploitation
– This is NOT offline planning! You actually take actions in the world and

find out what happens…

Taxonomy of RL Methods

Q-Learning

• State-action value function: Q�(s,a)
• Expected return when starting in s, performing a, and following �

• Q-Learning: Use any policy to estimate Q that maximizes future reward:
• Q directly approximates Q* (Bellman optimality equation)

• Independent of the policy being followed

• Only requirement: keep updating each (s,a) pair

s

a

s’

r

New State Old State Reward

Learning Rate Discount Factor

Q-Learning: Value Iteration

A1 A2 A3 A4

S1 +1 +2 -1 0

S2 +2 0 +1 -2

S3 -1 +1 0 -2

S4 -2 0 +1 +1

Q-Learning: Off-Policy TD Control

() () () ()[]tttattttt asQasQrasQasQ ,,max,,
:learning-Q step-One

11 -++¬ ++ ga

Sarsa: On-Policy TD Control
S A R S A: State Action Reward State Action
Turn this into a control method by always updating the policy to be greedy with respect to the
current estimate:

Advantages of Temporal Difference (TD)
Learning

n TD methods do not require a model of the environment, only experience
n TD, but not MC, methods can be fully incremental

q You can learn before knowing the final outcome
n Less memory
n Less peak computation

q You can learn without the final outcome
n From incomplete sequences

n Both MC and TD converge

Example :

PathFinder Bot using
Reinforcement Learning

A Reinforcement Learning Example

Which path agent should choose???

A Reinforcement Learning Example

• Suppose we have 5 rooms A to E, in a building connected by certain
doors :

• We can consider outside of the building as one big room say F to
cover the building.

• There are two doors lead to the building from F, that is through room B
and room E.

• Which path agent should choose???

Solution using RL

Step 1: Modeling the environment-
– Represent the rooms by graph,
– Each room as a vertex (or node) and
– Each door as an edge (or link).
– Goal room is the node F

Step 1: Modelling the environment

!

ü Goal –Outside the building – Node F
ü Assign Reward Value to each room
ü State- Each room (including outside building)
ü Action – Agent’s Movement from 1 room to next room
ü Initial state – C (random)
ü Reward- Goal Node - highest reward (100) rest – 0;

State Diagram

Reward table/ Matrix R

!

Reward table/ Matrix R

!
!

Q Matrix- Experience Table

• Q matrix – Brain of agent - represent the memory of what the agent have learned
through experiences.

• In beginning, agent know nothing, thus Q is zero matrix.
• Let no of state is known (6).

• In more general case, start with zero matrix of single cell.
• It is a simple task to add more column and rows in Q matrix if a new state is found.

!

Q Matrix- Experience Table

• To use the Q matrix, the agent traces the sequence of states, from the initial state until goal state. The

algorithm is as simple as finding action that makes maximum Q for current state:

• The algorithm above will return sequence of current state from initial state until goal state.

 Algorithm to utilize the Q matrix
Input: Q matrix, initial state

1. Set current state = initial state
2. From current state, find action that produce maximum Q value
3. Set current state = next state
4. Go to 2 until current state = goal state

!

Q learning

• Given : State diagram with a goal state (represented by matrix R)

• Find : Minimum path from any initial state to the goal state (represented by matrix Q)

 Q Learning Algorithm goes as follow
1. Set parameter , and environment reward matrix R
2. Initialize matrix Q as zero matrix
3. For each episode:

o Select random initial state
o Do while not reach goal state

! Select one among all possible actions for the current state
! Using this possible action, consider to go to the next state
! Get maximum Q value of this next state based on all possible

actions
! Compute

! Set the next state as the current state

End Do
End For
!

Step 2:

• Let us set the value of learning parameter=0.8 and initial state as room B.
• Set matrix Q as a zero matrix.
• Reward matrix R

! !

!

Step 3: Update Q Matrix/Experience Table
• Randomly choose a state

• Let it select state B in matrix

• 2 possible action- D,F

• Consider now we are in state F.

• It has 3 possible actions to go to
– State B, E or F.

Update Q Matrix

• F is final state – end of one episode.

!

!

Repeat again (Episode 2)
• Start with initial random state.

– State D
– 3 possible actions- B, C and E.

• By random selection, let

– B is next state.
– state B- 2 possible actions (D, F)

• Compute Q value

!

!

Inner loop continue

!

! !

n No change in matrix Q – same value

n F goal state – Finish 2 episode

Start Again with B state

Continue for more episodes …..

• If agent learn more and more, experience through many episode,

• It reaches to convergence value of matrix Q

!

After Normalization

C -- D -- B -- F or C -- D -- E -- F

!

!

Q-Learning: Representation Matters

• In practice, Value Iteration is impractical
• Very limited states/actions
• Cannot generalize to unobserved states

• Think about the Breakout game
• State: screen pixels

• Image size: !"×!" (resized)

• Consecutive 4 images

• Grayscale with 256 gray

levels

#$%!"×!"×" rows in the Q-table!

= 1069,970 >> 1082 atoms in the universe

Deep RL = RL + Neural Networks
DeepMind Atari (©Two Minute Lectures)

Alpha Go Story

Source: https://www.youtube.com/watch?time_continue=6&v=8tq1C8spV_g&feature=emb_title
https://www.youtube.com/watch?v=8dMFJpEGNLQ

Game of Go

Deep Mind, acquired by Google in 2014, made headlines in 2016 after its AlphaGo program beat

a human professional Go player Lee Sedol, the world champion, in a five-game match.

A more general program, AlphaZero, beat the most powerful programs playing go, chess and

shogi (Japanese chess) after a few days of play against itself using reinforcement learning.

AlphaGo (2016) Beat Top
Human at Go

MuZero: Learning dynamics for planning (2020)

“In part because few real-world problems are as constrained as the games on
which DeepMind has focused, DeepMind has yet to find any large-scale
commercial application of deep reinforcement learning.”

Aug 14, 2019 Wired : https://www.wired.com/story/deepminds-losses-future-artificial-intelligence/

Source : Simulation and Automated Deep Learning

To date, for most successful robots operating in

the real world: Deep RL is not involved

To date, for most successful robots operating
in the real world: Deep RL is not involved

But… that’s slowly changing:
Learning Control Dynamics

But… that’s slowly changing:
Learning to Drive: Beyond Pure Imitation (Waymo)

But… that’s slowly changing:
Object detection using DRL

Deep Reinforcement Learning of Region Proposal Networks for Object Detection, 2018

• Hierarchical Object Detection with Deep Reinforcement Learning

The outline of application domains of
RL in healthcare

Source : Yu, C., Liu, J., & Nemati, S. (2019). Reinforcement learning in healthcare: A survey. arXiv preprint
arXiv:1908.08796.

Deep Reinforcement Learning
Efficient Object Detection in Large Images using Deep Reinforcement Learning [2020]

• Deep Reinforcement Learning for Active Human Pose Estimation [2020]

Pilot study for walking person detection using
Reinforcement Learning Test results of Walking person dataset:

• The bounding box shape is not correct but it is observable that the
model has got the idea of how to detect a person in an image.

• Sometimes it zooms in too much on the person.

Test results of Walking person dataset:

Precision-Recall curves

Average precision-Recall score:
0.60

Fig: Precision vs Recall graph

Deep-RL in Call Centre
CRSRL: Customer Routing System Using deep Reinforcement Learning [2019]

Deep-RL in Financial markets
Deep Reinforcement learning in

Electrical Engineering

Challenge: RL & Real-World Applications
Reminder:

Supervised

learning: teach by

example

Reinforcement learning:

teach by experience

Open Challenges. Two Options:

1. Real world observation + one-shot trial & error

2. Realistic simulation + transfer learning
1. Improve

Transfer
Learning

2. Improve
Simulatio
n

Conclusion

• Reinforcement learning addresses a very broad and relevant
question: How can we learn to survive in our environment?

• We have looked at Q-learning, which simply learns from experience.
– No model of the world is needed.

• We made simplifying assumptions: e.g. state of the world only
depends on last state and action. This is the Markov assumption. The
model is called a Markov Decision Process (MDP).

• There are many extensions to speed up learning.
• There have been many successful real world applications.

Thinking Outside the Box:
Multiverse Theory and the Simulation Hypothesis

• Create an (infinite) set of simulation environments to learn in
so that our reality becomes just another sample from the set.

Key Takeaways for Real-World Impact

• Deep Learning:

• Fun part: Good algorithms that learn from data.
• Hard part: Good questions, huge amounts of representative data.

• Deep Reinforcement Learning:

• Fun part: Good algorithms that learn from data.
• Hard part: Defining a useful state space, action space, and reward.
• Hardest part: Getting meaningful data for the above formalization.

References
• MIT Deep Learning Basics: Introduction and Overview with TensorFlow

• Univ. of Alberta

• http://www.cs.ualberta.ca/~sutton/book/ebook/node1.html

• www.cs.ualberta.ca/~sutton/book/the-book.html

• Sutton and barto,”Reinforcement Learning an introduction.”

• Univ. of South Wales

• http://www.cse.unsw.edu.au/~cs9417ml/RL1/tdlearning.html

• https://people.revoledu.com/kardi/

• http://mnemstudio.org/path-finding-q-learning-tutorial.htm

• MIT Deep Learning and Artificial Intelligence Lectures

• https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/

• https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/

• https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/

