

How can we learn?	Learning Agents
 Skill refinement one can learn by practicing, e.g playing the piano. Knowledge acquisition one can learn by experience and by storing the experience in a knowledge base. One basic example of this type is rote learning (process of memorizing information based on repetition). Problem Solving if we solve a problem one may learn from this experience. The next time we see a similar roblem we can solve it more efficiently. not usually involve gathering new knowledge but may involve roorganisation of data or remembering how to achieve to solution. Taking advice Similar to rote learning although the knowledge that is input may need to be transformed (or operationalised) in order to be used effectively. Induction One can learn from examples. Humans often classify things in the world without knowing explicit rules. Usually involves a teacher or trainer to aid the classification. Discovery Here one learns knowledge without the aid of a teacher. Analogy If a system can recognise similarities in information already stored then it may be able to transfer some knowledge to improve to solution of the task in hand. 	 Why Learning ??? The agent designer cannot anticipate all possible world states the agent new romate and code them in the agent new romate marking the agent of new maze whenever encountered The agent designer cannot anticipate all changes over time E.g., Stock market prediction Sometimes the agent designer have no idea how to program a solution E.g., Stock market prediction Sometimes the agent designer thave no idea how to program a solution E.g., Stock market prediction Store times the agent designer cannot anticipate all changes over time E.g., Stock market prediction Sometimes the agent designer have no idea how to program a solution E.g., Stock market prediction Store the agent designer cannot anticipate all changes over time E.g., Stock market prediction Sometimes the agent designer have no idea how to program a solution E.g., Stock market prediction Store the market prediction Store the agent designer have no idea how to program a solution E.g., Stock market prediction Store the agent designer have no idea how to program a solution E.g., Stock market prediction Store the agent designer have no idea how to program a solution E.g., Stock market prediction

"If today were the last day of my life, would I want to do what I'm about to do today?" – Steve Jobs

Q-Learning: Off-Policy TD Control

One - step Q - learning : $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \Big[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \Big]$

 $\begin{array}{c} \underset{Q(s_i,a_i)}{\operatorname{eq}} - \underset{Q(s_i,a_i)}{\operatorname{eq}} + \underset{\alpha(s_i,a_i)}{\operatorname{etransp}} \times \overbrace{respected discontent respect}^{add discontent respect} \xrightarrow{discontent} \underset{\alpha(s_i,a_i)}{\operatorname{etransp}} \xrightarrow{discontent} \underset{\alpha(s_i,a_i)}{\operatorname{respect}} \xrightarrow{respected discontent} \underset{\alpha(s_i,a_i)}{\operatorname{respect}} \underset{\alpha(s_i,a_i)}{\operatorname{respect}} \xrightarrow{discontent} \underset{\alpha(s_i,a_i)}{\operatorname{re$

 $Q(state, action) = R(state, action) + \gamma * Max[nextstate, allactions]$

Initialize Q(s, a) arbitrarily Repeat (for each episode):

- Înitialize s
- Repeat (for each step of episode): prove (for each seep of cpuspone). Choose a from s using policy derived from Q (e.g., ε -greedy) Take action a, observe r, s' $Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$ $s \leftarrow s'$;
- until s is terminal

Sarsa: On-Policy TD Control

SARSA: State Action Reward State Action

Turn this into a control method by always updating the policy to be greedy with respect to the current estimate:

> Initialize Q(s, a) arbitrarily Repeat (for each episode): Initialize s Choose a from s using policy derived from Q (e.g., ε -greedy) Repeat (for each step of episode): Take action a, observe r, sChoose a' from s' using policy derived from Q (e.g., $\varepsilon\text{-greedy})$ $\begin{array}{l} Q(s,a) \leftarrow Q(s,a) + \alpha [\overrightarrow{r} + \gamma Q(s',a') - Q(s,a)] \\ s \leftarrow s'; \ a \leftarrow a'; \\ \text{until } s \text{ is terminal} \end{array}$

Q learning	Step 2:
 Given : State diagram with a goal state (represented by matrix R) Find : Minimum path from any initial state to the goal state (represented by matrix Q) 	 Let us set the value of learning parameter=0.8 and initial state as room B. Set matrix Q as a zero matrix. Reward matrix R
Q Learning Algorithm goes as follow 1. Set parameter , and environment reward matrix R 2. Initialize matrix Q as zero matrix 3. For each episode: • Select on initial state • Do while not reach goal state • Select one among all possible actions for the current state • Using this possible action, consider to go to the next state • Get maximum Q value of this next state based on all possible actions • Compute [Q(state, action) = R(state, action) + y. Max[Q(next state, all action) • Set the next state as the current state	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

To date, for most successful robots operating in the real world: Deep RL is not involved

Conclusion Reinforcement learning addresses a very broad and relevant question: How can we learn to survive in our environment? We have looked at Q-learning, which simply learns from experience. No model of the world is needed. We made simplifying assumptions: e.g. state of the world only depends on last state and action. This is the Markov assumption. The model is called a Markov Decision Process (MDP). There are many extensions to speed up learning. There have been many successful real world applications.

