Artificial Intelligence
Module 7: Reinforcement Learning (PART-I)

Learning from Experience : Learning in human way

Dr. Chandra Prakash

Assistant Professor
Department of Computer Science and Engineering

(Slides adapted from Stuart]. Russell, B Ravindran, Mausam, Dan Klein and Pieter Abbeel, Partha P Chakrabarti,
Saikishor Jangiti

Module 7: Reinforcement Learning

* PART 7.1 : Learning Agent

« PART 7.2 : Introduction to Machine Learning

* PART 7.3 : Types of Machine Learning

* PART 7.4 : Learning from experience :
Reinforcement Learning
Background

* PART 7.5 : Model based and Model free learning

e PART 7.6 : TD and Q Learning

* PART 7.7 : RL Applications

Agent Architecture Recap

« Simple Reflex Agent
¢ Model based Agent

* Goal based Agent

« Utility based Agent

« Learning based Agent

* An agent is learning if it improves its performance on future tasks
after making observations about the world

« Learning happens through observations, i.e., Experience or data, etc.

What is Learning?

Learning is an important area in Al, perhaps more so than planning.

Problems are hard -- harder than planning.

1 1

Recognised
A goal of Al is to enable computers that can be taught rather than programmed.

are not as as

Learning is an area of Al that focusses on processes of self-improvement.
Information processes that improve their performance or enlarge their knowledge bases
are said to learn.
Why is it hard?
Intelligence implies that an organism / machine must be able to adapt to new situations.
It must be able to learn to do new things.

This requires knowledge acquisition, inference, updating/refinement of knowledge base, acquisition of
heuristics, applying faster searches, etc.

How can we learn?

« Skill refinement « Taking advice

one can learn by practicing, e.g playing the
piano.

« Knowledge acquisition
one can learn by experience and by storing the
experience in a knowledge base.
One basic example of this type is rote learning
(process of memorizing information based on
repetition).

* Problem Solving
if we solve a problem one may learn from this
experience. The next time we see a similar
problem we can solve it more efficiently.

— not usually involve gathering new knowledge

but may involve reorganisation of data or
remembering how to achieve to solution.

Similar to rote learning although the knowledge that
is input may need to be transformed (or
operationalised) in order to be used effectively.

Induction
One can learn from examples. Humans often classify
things in the world without knowing explicit rules.
Usually involves a teacher or trainer to aid the
classification.

Discovery
Here one learns knowledge without the aid of a
teacher.

Analogy

— Ifa system can recognise similarities in information

already stored then it may be able to transfer some

knowledge to improve to solution of the task in hand.

Learning Agents

Why Learning ??? « Four conceptual components

The agent designer cannot anticipate all
possible world states the agent need to handle
and code them in the agent environment
E.g., A robot designed to navigate mazes
need to learn the layout of new maze
whenever encountered

The agent designer cannot anticipate all
changes over time
E.g., Stock market prediction

Sometimes the agent designer have no idea how
to program a solution
E.g., Stock market prediction

— Learning element
+ Making improvement
Performance element
« Selecting external actions
Critic
« Tells the Learning element how well the
agent is doing with respect to fixed
performance standard.
+ (Feedback from user or examples, good or
not?)
Problem generator
« Suggest actions that will lead to new and
informative experiences.

Learning Agents

Performance standard
i T‘ o
C ”U Sensors
feedback
fes|
=
changes =
Learning Performance 5
element element =
z 8
earning o
learning 2
goals =
Problem
gencrator

\ Agent Actuators o

(

Al- ML Terminology

Artificial Intelligence

o
B
B2 commumicaion © qer 55 N [
§% LEARNING _mestinin C2 o Optimization Deep
wob ARTIFICIAL SR Stochastic oo Inference sk
W INTELLIGENCE Models“iais]. eaI > I] 11] g
§3COMPUTER A\ | 2 Convolucgal :
H = l\‘. 5 = e Prediction ,
12 jmmaenn PN BB “Networks anr, ciiia
Gf >3 Neural Bayesian Bandits g Network '
w 03 Data warp . Gradient ™
= 2 Linés?
:

Introduction

Machine learning: Definition
o A scientific discipline that is concerned with the design and
development of algorithms that allow computers to learn based on
data, such as from sensor data or databases, etc.

Major focus of machine learning research
v To automatically learn to recognize complex
patterns and make intelligent decisions based on data .

What is Machine learning:

Machine learning is the science of making computers learn and act like humans by feeding data
and information without being explicitly programmed!

O Learns

Predicts

Ordinary System With Artificial Intelligence Machine Learning

Improves

Can You Recognize these Pictures ?

Image or a sculpture ?2?

¢ If Yes, How do you Recognize it?

Learning

Learning is constructing or modifying representations of what
is being experienced. -- McCarthy, 1968

Learning

9 7
gargr e %

Machine learning Type:

With respect to the feedback type to learner:

o Supervised learning :
= Task Driven (Classification)

o Unsupervised learning :
= Data Driven (Clustering)

o Reinforcement learning N
= Self learning (reward based)

Supervised learning

Motorcycles

OlLinear regression

OlLogistic regression

QPerceptron

ONaive Bayes

ONeural Networks

ODecision trees; K-Nearest Neighbor
QSupport Vector Machine (SVM)

Testing:
What is this?

Supervised learning

= Apply a prediction function to a feature
representation of the image to get the desired
output:

/"\ ﬂn) _ “apple”
B = “tomato”
f() — “COW”

Artificial Neural Network

Consists of a number of very simple processors, also called neurons,
Analogous to the biological neurons in the brain.
Neurons are connected by weighted links passing signals from one neuron to another.
The output signal is transmitted through the neuron’s outgoing connection.
The outgoing connection splits into a number of branches that transmit the same signal.
The outgoing branches terminate at the incoming connections of other neurons in the network.

Inputs Weights

AN
X Y sm .'b‘:"i:’”" Ouput f
wor f o fw)

X W,

Real time problem —

DATA available/unavailable — not what to do ??

Ay
=
ed 77?7

How to proceed ???

Based on Shape Based on Color

vy
24

Un-Supervised learning

Unlabeieu niiayes (all carsimoiorc cle:

Clustering

Which Group
It belongs to ??

Supervised VS Unsupervised

Unsupervised
Find hidden
structure in data

I
~'®¢ Labeled Data ® Non-labeled data
Supervised
@ No feedback
>
ke

| Predict output

i
i

i

i

i

i

i

Direct feedback vs i

Y i
i

i

i

i

i

i

i

H

Reinforcement/Self Learning

(random internef images)

Testing:
What is this?

At ST g
IMAGENET

22,000 categories 15,000,000 images
O AR B T g © PO S ML)

Vision and Deep Learning

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
258
25
20
16.4
15
11.7 rs| [22 layers]
10
7.3 6.7
5.1
5 snatow] -
shallow 2 s 23
, 1IN N I B H Em =
00 2om 12 203 2014 ;e 205 2018 20w
Unesl Socbers Wbonbyetsl Zekrk Simonnd Sepedvesl Meerst Soets Huetal Rusoniyets
prostiiag it el gy By bl o frbo

Reinforcement Learning Examples

Deep Reinforcement Learning

AlphaGo

ATARI2600

Alpha Go

Mnih, V. (2013). Playing atari with deep reinforcement learning Silver,

D. (2016). Mastering the game of Go with deep neural networks and tree scarch

Leaming to Run challenge solutions: Adapting eiforcement learning methods for neuromusculoskeletal environments,

Supervised Learning

» It’s all “supervised” by a loss function!

Neural
Network

Output

* *Someone has to say what’s good and what’s bad

At a high-level, neural networks are either encoders, decoders, or a combination of both:
Encoders find patterns in raw data to form compact, useful representations.
Decoders generate high-resolution data from those representations. The generated data is either new
examples or descriptive knowledge.

Supervised Learning Unsupervised Learning

5 Autoencoder

2 ! vt |—f e

" 2 Convolutional Neurl Networks

‘ 1 Feed Forward Neural Netwarks ‘

(6. Generstve Adversaral Networks

TR] e | e

EaRe=.

3 Recurrent Neura Networks]

Reinforcement Learning

(7. Networks for Acions, Values, Poicie, nd Models

Lo Pl P o] e |

Deep learning - rept ion learning: the d formation of useful representations from data.

Reinforcement

Feed Forward, Recurrent, Convolutional Neural Networks
Human Annotated

Input: Network ot Tt

oupt:
- m P oredicton [+

 Supervised learning is “teach by example”:

ediction |

Here’s some examples, now learn patterns in these example.

« Reinforcement learning is “teach by experience”:
Here’s a world, now learn patterns by exploring it.

Networks for Learning Actions, Values, Policies, and/or Models

Input: Network Experienced
Output: Ground Truth

Environment Representation &
Sample

Dictionary meaning

Occurrence of an event, in the proper relation to a response, that tends to
increase the probability that the response will occur again in the same
situation.

Reinforcement Learning (RL)
“a way of programming agents by reward and punishment without
needing to specify how the task is to be achieved”
[Kaelbling, Littman,& Moore, 96]

Reinforcement Learning (Cont..)

« Imagine playing a new game whose rules we don’t know; after a
hundred or so moves, the referee tells that you lose.

* From the point of view as designers of Al systems
Providing a reward signal to the agent is usually much easier than providing
labeled examples of how to behave.
Reward function is often very concise and easy to specify

‘We don’t have to be experts, capable of supplying the correct action in any
situation.

Emphasizes learning feedback that evaluates the learner's performance without providing
standards of correctness in the form of behavioral targets.

Some researcher consider RL a form of unsupervised learning.

An orthogonal approach for Learning Machine. :

RL is training by

= rewards and punishments.

= Good vs Bad

RL agent learns by receiving a reward or reinforcement through trfal-dnd- intCractions with a
dynamic environment to achieve a goal, without any form of supervision other than its own
decision-making policy.

TT

Reinforcement Learning is learning how to act in order to maximize a numerical reward.

Reinforcement Learning in Humans

Reinforcement Learning (RL)

* Human appear to learn to walk through “very few examples” of trial and error. How is
an open question...

* Possible answers:
* Hardware: 230 million years of bipedal movement data.
« Imitation Learning: Observation of other humans walking.
« Algorithms: Better than backpropagation and stochastic gradient descent

Close to Human Learning.
Agent learns a policy of how to act in a given environment.

Every action has some impact in the environment, and the environment provides
rewards that guides the learning algorithm

Study Time as a Self Learning Model

Right Straight
Left 8
Right 3 1 7
Straight 6 11 50

More Example (Experiment by Pavlov)

Pavlov and his Dog

Py

2. Before Conditoning

L — =

et Nl Simius NoCendiioned

3. During Condiioning 4. Afer Conditoning

o
¢ +\\\ foparts T \dh‘\\m
]
- o = cadn
" g | g Cardined

« Early Results:

Classical (Pavlovian) conditioning experiments
Training: Bell=Food

After: Bell — Salivate

Conditioned stimulus (bell) predicts future reward (food)

Source : httpsi/ww youtube.com/wate -

~hqumfpru&=34s

RL and Animal Foraging

« RL studied experimentally for more than 80 years in psychology and
brain science
— Rewards: food, pain, hunger, drugs, etc.
— Evidence for RL in the brain via a chemical called dopamine
« Example: foraging
Bees can learn near-optimal foraging policy in field of artificial flowers with
controlled nectar supplies

Reinforcement Learning Framework

At each step, the agent:
* Executes action
* Observe new state
* Receive reward
* intrinsic rewards - food

* Extrinsic rewards- money

Environment

Open Questions:

* What cannot be modeled in
this way?

« What are the challenges of
learning in this framework?

Element of Reinforcement Learning

Agent: Intelligent programs o Defines the goal in_an RL
8 . sentprog| p,.f;,ym & =Value function:
Environment: External L N B . . -
condition o Policy is altered to achigSpecifies what is good in the long run while Reward
Poli this goal Sfunction indicates what is good in an immediate sense.
olicy:

o

Feedback that measures thalue of a state - Total amount of reward an agent can

= Agent’s behavior at a given sucess or failure of dhpect to accumulate over the future, starting form that

time agent's action state.
= A mapping from states to . i
actions =Model of the environment :

aUsed for planning & if Know current state and action

« Lookup tables or simple
» » then predict the resultant next state and next reward.

Sfunction
Reward function :

Reinforcement Learning

value/policy
acting
planning girect
State: s Actions: RL
Reward: r cuions: a
model experience
Environment v
model
learning

Basic idea:
Receive feedback in the form of rewards
Agent’s utility is defined by the reward function
~ Must (learn to) act so as to maximize expected rewards
All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial A Learning Trial

[Kohl and Stone, ICRA 2004]

Environment and Actions

Note: Real-world envi

Fully Observable (Chess) vs Partially Observable (Poker)

Single Agent (Atari) vs Multi Agent (DeepTraffic)

Deterministic (Cart Pole) vs Stochastic (DeepTraffic)
Deterministic system - no randomness is involved in the development of future states of the system.
Stochastic system - random probability distribution or pattern that may be analysed statistically but
may not be predicted precisely.

Static (Chess) vs Dynamic (DeepTraffic)

Discrete (Chess) vs Continuous (Cart Pole)

hnicall

might not ly be or partially-observable but might

as well be treated as such due to their complexity.

Learning vs Inference

After Learning [1K Trials]

* Batch setting in Bayes Nets
Data — Model — Prediction

 Active setting in MDPs
— Action — Data — (Model ?)

« Actions have two purposes
To maximize reward

To learn the model

Reinforcement Learning Vs MDP

Still assume a Markov decision process (MDP):
Asetof states s € S
A set of actions (per state) A

A model T(s,a.5")

A reward function R(s,a,5”) ‘
Still looking for a policy 7(s) ®
New twist: don’t know T or R

Le. we don’t know which states are good or what the actions do

Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

Major Components of an RL Agent

An RL agent may be directly or indirectly trying to learn a:
« Policy: agent’s behavior function

* Value function: how good is each state and/or action

* Model: agent’s representation of the environment
50,0, 71, S1L,AL T2 e v ve v e sSn—1, 1,10, Sn
t [1
state Terminal state
action
reward

Main dimension in RL

Model-based vs. Model-free
* Model-based: learn the model (T, R) @ . g ﬁ
* Model-free: directly learn what action to do when i

Passive vs. Active Dynamic programming

« Passive: learn state values evaluating a given policy Model-based
Monte Carlo methods

« Active: need to learn both optimal policy + state values
No Model

Strong vs Weak simulator Temporal-difference learning.

« Strong: can jump to any part of state space and simulate
* Weak: real world; can’t teleport

Passive Reinforcement Learning

Passive Reinforcement Learning

* Simplified task: policy evaluation
— Input: a fixed policy n(s)
You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s”)
Goal: learn the state values

* In this case:
Learner is “along for the ride”
No choice about what actions to take
— Just execute the policy and learn from experience
This is NOT offline planning! You actually take actions in the world.

Passive Learning : Direct Evaluation

* Goal: Compute values for each state under 7

« Idea: Average together observed sample values
Act according to

Every time you visit a state, write down what the
sum of discounted rewards turned out to be

Average those samples

* This is called direct evaluation

Polcity Selection for Robot in a Room

actions: URDOWN, LEFT, RIGHT
+1 (Stochastic) model of the world:
l Action: UP
80% move UP
10% move LEFT
START 10% move RIGHT

* Reward +1 at [4,3], -1 at [4,2]
% * Reward -0.04 for each step
* What's the strategy to achieve max reward?
* We can learn the model and plan
* We can learn the value of (action, state) pairs and act greed/non-greedy
+ We can learn the policy directly while sampling from it

Optimal Policy for a Deterministic World

Reward: -0.04 for each step

ions: UPDOWN, LEFT, RIGHT
* » _’ +1 actions: UP, R)

When actions are deterministic:

-»>

-1 up

100% move UP
0% move LEFT
0% move RIGHT

-

Policy: Shortest path.

Optimal Policy for a Stochastic World

Reward: -0.04 for each step

ions: URDOWN, LEFT, RIGHT
» * * 1 actions: UP, | LEFT,

When actions are stochastic:

f f -1 up

80% move UP

f « « « 10% move LEFT
10% move RIGHT

Policy: Shortest path. Avoid -UP around -1 square.

Optimal Policy for a Stochastic World

Reward: -2 for each step

ions: URDOWN, LEFT, RIGHT
* » -’ 11 actions: UP, B N

‘When actions are stochastic:

-»>
1
v

-1 uP

80% move UP

* * 10% move LEFT
L
» f 10% move RIGHT

Policy: Shortest path.

Optimal Policy for a Stochastic World

Reward: -0.1 for each step Reward: -0.04 for each step

> = p| | || |-,

1 + ||t -

t = 1 ¢ 1 €

More urgent Less urgent

Optimal Policy for a Stochastic World

Reward: +0.01 for each step

actions: UP,DOWN, LEFT, RIGHT

-

« « +1
‘When actions are stochastic:

« -1 up

-

80% move UP

10% move LEFT
- - - 10% move RIGHT

Policy: Longest path.

Lessons from Robot in Room

» Environment model has big impact on optimal policy

» Reward structure has big impact on optimal policy

“Two rliads diverged 4 F
and'l <] took the one less traveled by,
and-that has made all the difference.”

< Robert Frost

Reinforcement Learning (Cont..)

= Concept used in Reinforcement Learning

o Evaluative Vs. Instructive Feedback
o Associative Vs. Non-Associative
a Exploration and exploitation

Action Selection Method

Exploration and exploitation
1. Greedy action: Action chosen with greatest estimated value.

Greedy action: a case of Exploitation.
« £ -greedy
0 Most of the time the greediest action is chosen
0 Every once in a while, with a small probability €, an action is selected at random.

& Non-Greedy action: a case of Exploration, as it enables us to improve
estimate the non-greedy action's value.

- e-soft - The best action is selected with probability (1 —¢) and the rest of the time
a random action is chosen uniformly.

€-Greedy Action Selection Method :

Let the a* is the greedy action at time t and Q,(a) is the value of action a at
time.
Greedy Action Selection:
a,=a, =argmax O,(a)
= € —greedy
ae { a, with probability 1-e

random action with probability €

Exploration vs Exploitation

* Deterministic/greedy policy won’t explore all actions
Don’t know anything about the environment at the beginning
Need to try all actions to find the optimal one
* e-greedy policy
Every once in a while, with a small probability €, an action is selected at random.
£-soft : With probability 1-& perform the optimal/greedy action, otherwise random action
Slowly move it towards greedy policy: & -> 0

Action Selection Policies (Cont...)

= Softmax —
o Drawback of ¢ -greedy & ¢-soft: Select random actions uniformly.
o Softmax remedies this by:

= Assigning a weight with each actions, according to their action-
value estimate.

= A random action is selected with regards to the weight associated
with each action

= The worst actions are unlikely to be chosen.

= This is a good approach to take where the worst actions are very
unfavorable.

Softmax Action Selection(Cont...)

= Problem with e-greedy: Neglects action values
= Softmax idea: grade action probs. by estimated values.

= Gibbs, or Boltzmann action selection, or exponential weights:
Qi(a)/T
Qi)

S @/

T is the “computational temperature”

At t = 0 the Softmax action selection method become
the same as greedy action selection.

Some terms in Reinforcement Learning

= The Agent Learns a Policy:

o Policy at step t. 7z, : a mapping from states to action probabilities will
be:

7, (s,a) = probability that a, = a when s, = s

o Agents changes their policy with Experience.
o Objective: get as much reward as possible over a long run.
= Goals and Rewards

o A goal should specify what we want to achieve, not how we want to
achieve it.

Meaning of Life for RL Agent:
Maximize Reward

* Future reward: R = m+ m+nat-+m
* Discounted future reward:
Re= 1 yreat Yoreot iy
* A good strategy for an agent would be to always choose an action that
maximizes the (discounted) future reward
* Why “discounted”?

* Math trick to help analyze convergence

« Uncertainty due to environment stochasticity, partial observability, or that
life can end at any moment:
“If today were the last day of my life, would I want to do what I'm

about to do today?” — Steve Jobs

Some terms in RL (Cont...)

= Returns
o Rewards in long term
o Episodes: Subsequence of interaction between agent-environment
e.g., plays of a game, trips through a maze.
= Discount return
0 The geometrically discounted model of return:

> . 2 k
R =rep1 + g0 7 g3+ = VTR L

=0
where 7,0 <y < 1,is the discount rate

o Used to:
= to make future rewards less important than immediate rewards
= enforce short time learning in agent
= To determine the present value of the future rewards
= Give more weight to earlier rewards

UPDATE Rule

= Common update rule form:

NewEstimate = OldEstimate + StepSize| Target —OldEstimate)
= The expression [Target - Old Estimate] is an error in the estimate.
= It is reduce by taking a step toward the target.

= In proceeding the (t+1)st reward for action a the step-size parameter will be 1\(t+1).

Value function

= States-action pairs function that estimate how good it is for the agent to be in a given state
= Type of value function
o State-Value function

T The value of a state is the expected return starting from
that state: depends on the agent’s policy:

State-value function for policy T :

V™(s) = Ex{Ri|sc=s} = E,,{Z Vorerri
=

wms)

o Action-Value function

O The value of taking an action in a state under policy 7
is the expected return starting from that state, taking that
action, and thereafter following rt

Action-value function for policy 7t

EH) = BB et — (5 = Er{g"/k‘l‘l+i.+l | s;:s.n,:a}

72

Examples of Reinforcement Learning

Identify :- GSAR ???
Cart-Pole Balancing
* Goal —Balance the pole on top of a moving cart
+ State —Pole angle, angular speed. Cart position, horizontal velocity.
* Actions —horizontal force to the cart

* Reward —1 at each time step if the pole is upright

Examples of Reinforcement Learning

Grasping Objects with Robotic Arm
* Goal - Pick an object of different shapes
+ State - Raw pixels from camera

* Actions — Move arm. Grasp.

Reward - Positive when pickup is successful

The Crawler!

™
|

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

Next Time

3 Types of Reinforcement Learning

tter
" Less
‘Sample Efficient Sample Efficient

’ Offpolicy " On-policy Evolutionary/
“"ggdﬁf,":f:"s) Q-learning Actor-critic Policy Gradient gradient-free
P (1 M time steps) (10 M time steps) (100 M time steps)

Artificial Intelligence
Module 7: Reinforcement Learning (PART-II)

Learning from Experience : Learning in human way

Module 7: Reinforcement Learning

PART 7.1 : Learning Agent
PART 7.2 : Introduction to Machine Learning
PART 7.3 : Types of Machine Learning
PART 7.4 : Learning from experience :
— Reinforcement Learning
— Background
PART 7.5 : Model based and Model free learning
PART 7.6 : TD and Q Learning
PART 7.7 : RL Applications

Learning/Planning / Acting

value/policy
acting
planning direct
RL
model experience
model
learning

3 Types of Reinforcement Learning

Better
o Less
Sample Efficient Sample Efficient

Oft-policy On-policy Evolutionary/
Model-based Actor-ciitic
X! Policy Gradient dient-f
(100 ime steps) (1 tmo siepe) (oM imeseps) (100 bmo sep)
Model-based Value-based Policy-based
* Learn the model of the * Learn the state or ¢ Learn the stochastic policy
world, then plan using the state-action value function that maps state to
model * Act by choosing best action
« Update model often action in state « Act by sampling policy
* Re-plan often + Exploration is a * Exploration is baked in

necessary add-on

Example: Expected Age

Goal: Compute expected age of CS 210 students

(Known P(A) |
‘ BElA]=) Pa)-a =035x20+... ’

Without P(A), instead collect samples [ay, a,, ... ay]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

VA Pla) = %@) : Whi/(does ths
A ~ L . work?
R arahy B~ S B~ 5 Za’ Because samples
you learn the right (4]~ Z (a)-a appear with th}a
model. “ right frequencies.

Reinforcement Learning Methods

* Model-based
Learn an empirical model
Solve for V* using policy evaluation
« assuming that the learned model is correct
Learning the model
« maintain estimates of T(s,a,s’)
* maintain estimates of R(s,a,s”)
Dynamic programming
* Model-Free
Monte Carlo methods
« Hybrid

Temporal-difference learning.

1.Dynamic programming

= Classical solution method
= Require a complete and accurate model of the environment.
= Popular method for Dynamic programming
o Policy Evaluation : Iterative computation of the value function
for a given policy (prediction Problem)

o Policy Improvement: Computation of improved policy for a
given value function.

V(s) < Edr +7V(s)}
NewEstimate = OldEstimate + StepSize[Target — OldEstimate)]

Model-Based Learning

* Model-Based Idea:
— Learn an approximate model based on experiences
Solve for values as if the learned model were correct

I\ =~
« Step 1: Learn empirical MDP model =
Count outcomes s’ for each s, a
Normalize to give an estimate of T'(s, a, s)
Discover each R(s, a, s’) when we experience (s, a, s”)
< Step 2: Solve the learned MDP (

For example, use value iteration, as before

Example: Model-Based Learning

Input Policy Observed Episodes (Training) Learned Model
T Episode 1 Episode 2 T(s,a,s")
B, east, C, -1 B, east, C, -1 T(B, east, <) - 1.00
C, east, D, -1 C, east, D, -1 TEE e““t‘ /]2;;827:
D, exit, x,+10 D, exit, x,+10 a8 o
Episode 4 R(s,a,s")
E, north, C, -1 E, north, C, -1 R(B, cast, €)= -1
R c LA -1 R(C, east, D) =-1
C,east, D, >east, A, R(D, exit, x) = +10
Assume: y=1 D, exit, x,+10] | A, exit, x,-10

Exercise
Data on Executing 7t 12 3 a4
Al | | | — [+100]
(A1,D,-1) (A1,D,-1) oy
(B1,R,-1) (B1,R,-1) T
(B2,R,-1) (B2,R,-1) ‘==
(B3, U,-1) (B3,U,-1)
(A3,R,-1) (C3,U,-1)
(A2,D,-1) (C4,-100) * T(A1,D,B1)
(B2, R, -1)
(B3, U, -1) = T(B3, U, A3)
(A3, R, -1)
(A4, 100)

Generalized Policy Iteration (GPI)

Consist of two iteration process,

» Policy Evaluation :Making the value function consistent with the
current policy

« Policy Improvement: Making the policy greedy with respect to the
current value function

evaluation
V—vT
T \4
a—greosy(V)
improvement

A geometric metaphor for
convergence of GPI:

starting
Vo

e

fla—— e

2. Monte Carlo Methods

= Features of Monte Carlo Methods

o No need of Complete knowledge of environment
Based on averaging sample returns observed after visit to that state.
Experience is divided into Episodes

C O o

Only after completing an episode, value estimates and policies are
changed.

o

Don't require a model

C

Not suited for step-by-step incremental computation

Model-Free Learning

S
* Model-free (temporal difference) learning a
Experience world through episodes
r

(s,a,r, 8 a' v’ 8" a" " ") ,
Update estimates each transition ZANS

(s,a,r,s") a
Over time, updates will mimic Bellman updates a’

S,
<
As”

MC and DP Methods

= Compute same value function
= Same step as in DP
o Policy evaluation
o Computation of state value (Vn) and action value (Qn)for a fixed
arbitrary policy (IT).
o Policy Improvement
o Generalized Policy Iteration

To find value of a State

= Estimate by experience, average the returns observed after visit to that
state.
= More the return, more is the average converge to expected value

Monte Carlo Policy Evaluation

3 Goal: learn Va(s)

en: some number of episodes under 5 which contain s

OV Jdea: Average returns observed after visits to s

< >)
DD DD D

“isit MC: average returns for every time s is visited
ode

/C: average returns only for /irst time s is
n episode

Monte Carlo conrol

evaluation
Q-0

T 0
rogreay(Q
improvement

3 MC policy iteration: Policy evaluation using MC methods
followed by policy improvement

3 Policy improvement step: greedify with respect to value
(or action-value) function

Monte Carlo and Dynamic Programming

Direct Evaluation

= MC has several advantage over DP:
o Can learn from interaction with environment
o No need of full models
o No need to learn about ALL states
o No bootstrapping

= bootstrapping in RL means that you update a value based on
some estimates and not on some exact values.

Input Policy & Observed Episodes (Training) Output Values
Episode 1 Episode 2
E B, east,C, -1 B, east,C, -1
C,east,D, -1 C, east,D, -1
D, exit, x, +10 D, exit, x, +10
] ool[o]
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C,east, D,-1 C, east, A, -1
Assume: y=1 D, exit, x, +10 A, exit, x,-10

C=9+9+9-11/4=4

Problems with Direct Evaluation

3. Temporal Difference (TD) methods

Output Values

* What’s good about direct evaluation?
It’s easy to understand
It doesn’t require any knowledge of T, R

It eventually computes the correct average values,
using just sample transitions

* What bad about it?

It wastes information about state connections
If B and E both go to C
under this policy, how can
their values be different?

Each state must be learned separately
So, it takes a long time to learn

Learn from experience, like MC

o Can learn directly from interaction with environment

o No need for full models

Estimate values based on estimated values of next states, like DP
Bootstrapping (like DP)

Issue to watch for:

0 maintaining sufficient exploration

Temporal Difference Learning

Temporal Difference (TD) Prediction

* Big idea: learn from every experience! s
Update V(s) each time we experience a transition (s, a, s’, 1) (s)

— Likely outcomes s’ will contribute updates more often
s, 11(s)

+ Temporal difference learning of values
Policy still fixed, still doing evaluation! As
Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = R(s,7(s).s') +~+V7(s)
Update to V(s): V7 (s) + (1 —)V (s) + (a)sample

Same update: VT (s) + V™(s) + a(sample — V7 (s))

Policy Evaluation (the prediction problem):
for a given policy 7, compute the state-value function

Simple every - visit Monte Carlo method !
Vis,) < Vs,)+ alR, ~V(s,)]
target

The simplest TD method, TD(0) -
V(Sr) <~ V(Sr)+a[’;tl +}/V(S1+])_ V(Sz)]

target
. . . Taxonomy of RL Methods
Active Reinforcement Learning
* Full reinforcement learning: optimal policies (like value iteration) e
~ You don’t know the transitions T(s,a,s”)
You don’t know the rewards R(s,a,s”) ‘
Model-Free RL Model-Based RL

You choose the actions now
Goal: learn the optimal policy / values

« In this case:
— Learner makes choices!
Fundamental tradeoff: exploration vs. exploitation
— This is NOT offline planning! You actually take actions in the world ang
find out what happens...

——

Policy Optimization ‘ ‘ Learn the Model Given the Model
World Models L» Alphazero

[poliey Grad\ent‘ DboN

< o oors :‘<)

| a2c/nsc < st ‘ 1A
v0 [qroan | T

| meo HER ‘ MBVE

Q-Learning

Q-Learning: Value Iteration

« State-action value function: Q" (s,a)
* Expected return when starting in s, performing a, and following a

* Q-Learning: Use any policy to estimate Q that maximizes future reward:
« Q directly imates Q* (Bellman optimality equation)
+ Independent of the policy being followed
+ Only requirement: keep updating each (s.a) pair

Qer1(st, ae) = Qelse, ar)+ar (Rz+1 +max Qe(se-1,2) = Qilst, ar))

Qes1(st.ae) = Qelst ar)+o (RHI +7max Qe(se41,) — Qelse, ar))

e e e

Al A2 A3 A4
inttialize Qlnum states,nun actions] arbitrarily
1] +1 | +2] 1] o cbaerve initial state &
repeat
select and carxy out an action a
s2 +2 0 +1 observe reward r and new state s'
Gl = Qo + e+ ¥ maxs alahsl = oimsd)
s34 |+ | o aeat
wntia terminated

Q-Learning: Off-Policy TD Control

Sarsa: On-Policy TD Control

One -step Q - learning :
Ols,a,) < O(s,.a,)+ al, + 7 max0(s,.,.a) - Ols, a,)]

eapected discounted reward oid value
< —
Qlseyar) = Qlsva) + aulsa) x[1o+ 7 maxQ(ser,a) = Qlsy, ar)]
RGN ~ a
old alue tcarning rte Tewarddiscount factor 7o

Qo) = Qo) (L = (50, 0)) + (s, 0) s + 1 X Qlovsn.)]

‘ Q(state, action) = R(state, action) + * Maz[nextstate, allactions]

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q (e.g., e-greedy)
Take action a, observe r, s’
Qs,0) — Qs,0) + alr + ymaxy Q) - Q(s,)
5 8
until s is terminal

SARSA: State Action Reward State Action
Turn this into a control method by always updating the policy to be greedy with respect to the
current estimate:

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from Q (e.g., e-greedy)
Repeat (for cach step of episode):
Take action a, observe r, s’
Choose @’ from s’ using policy derived from Q (e.g., e-greedy)
Qs.0) — Qs) +alr +7Q(s. @) — Q(s,)
s—sia—a;
until s is terminal

Advantages of Temporal Difference (TD)
Learning

Example :

TD methods do not require a model of the environment, only experience
TD, but not MC, methods can be fully incremental
o You can learn before knowing the final outcome
= Less memory
= Less peak computation
o You can learn without the final outcome
= From incomplete sequences
Both MC and TD converge

PathFinder Bot using
Reinforcement Learning

A Reinforcement Learning Example

A Reinforcement Learning Example

Goat

Which path agent should choose???

Suppose we have 5 rooms A to E, in a building connected by certain
doors :

We can consider outside of the building as one big room say F to
cover the building.

There are two doors lead to the building from F, that is through room B
and room E.

Which path agent should choose???

Solution using RL

Step 1: Modeling the environment-
Represent the rooms by graph,
Each room as a vertex (or node) and
Each door as an edge (or link).
Goal room is the node F

i

7 7N
(= o))

Step 1: Modelling the environment

Goal —Outside the building — Node F

Assign Reward Value to each room

State- Each room (including outside building)

Action — Agent’s Movement from 1 room to next room
Initial state — C (random)

Reward- Goal Node - highest reward (100) rest — 0;

ANENENENENEN

State Diagram

Reward table/ Matrix R

Reward table/ Matrix R

state\acton A B C D E F

A -=-=--10 -
B - - -0 - 100
c -=-=-0- -
D -00-10 -
£ 0 - -0 - 100
F -0 - -0 100

Q Matrix- Experience Table

Q matrix — Brain of agent - represent the memory of what the agent have learned
through experiences.

In beginning, agent know nothing, thus Q is zero matrix.

Let no of state is known (6).

I

oo o ooo
oooooo
coooooQ
co0ooo0oo0ooly
oo oooo
ocooooo

In more general case, start with zero matrix of single cell.

It is a simple task to add more column and rows in Q matrix if a new state is found.

Q Matrix- Experience Table

To use the Q matrix, the agent traces the sequence of states, from the initial state until goal state. The
algorithm is as simple as finding action that makes maximum Q for current state:

Algorithm to utilize the Q matrix

Input: Q matrix, initial state

. Set current state = initial state

. From current state, find action that produce maximum Q value
. Set current state = next state

. Go to 2 until current state = goal state

FNEPEY

The algorithm above will return sequence of current state from initial state until goal state.

Q learning

Step 2:

Given : State diagram with a goal state (represented by matrix R)
+ Find : Minimum path from any initial state to the goal state (represented by matrix Q)

Q Learning Algorithm goes as follow
1. Setparameter ,and environment reward matrix R
2. Initialize matrix Q as zero matrix
3. For each episode:

« Let us set the value of learning parameter=0.8 and initial state as room B.
+ Set matrix Q as a zero matrix.
* Reward matrix R

state\acion A B C D E F

© Select random initial state 48 C0DEF
o Do while not reach goal state A fooo0 o000 A --- -0 -
- Select one among all possible actions for the current state B looo o000 B - - 0 - 100
- Using this possible action, consider to go to the next state
« Get maximum Q value of this next state based on all possible Q=C (000000 R= c - - -0- -
actions D 000000 D - 00 -0 -
- Compute E |o00000) 0 - - 0 - 100
kQ(srate,actwn)=R(skxte,aczxon)+yvMaX[Q(nEXtstate,ailactzan 7 loooooo » 0 - - 0 100
= Set the next state as the current state
End Do
End For
Step 3: Update Q Matrix/Experience Table Repeat again (Episode 2)
- Randomly choose a state state\acton A B C D E F * Start with initial random state. ctate\action A B C D E F
« Let it select state B in matrix 4 - State D
+ 2 possible action- D,F - - 3 possible actions- B, C and E.
R= c -

Consider now we are in state F.

It has 3 possible actions to go to
State B, E or F.

@1 o1

* By random selection, let

B is next state.

state B- 2 possible actions (D, F)
» Compute Q value

Update Q Matrix ‘ .
Q(state, action) = R(state, action) + ~ * Maz|nextstate, allactions] Q(state, action) = R(state, action) + v * Maz|nextstate, allactions]
AB CDEF QD.B)=R(D, B)+0.8- Max{Q(8, D), Q(E. 7))} = 0+0.3. Max{ 0,100} = 80
Q(B,F) = R(B.F) +0.8x Maz[Q(F.B).QF,E).QIF.F)] ., [0 o o o o o
Q(B,F) = 100 + 0.8 * Maz[0,0,0] = 100 + 0.8 + 0 = 100 5 1o o0 00 100 4 B Cc D E F
Q=c [0 0000 o 4 [0 0 0 00 0
« Fis final state — end of one episode. b looooo o Zle oo e Y
is final state — end of one episode. zlooo0o0o0 o Q=-c |o o0 0 o
F 00000 o oo ¢ o0 o0 o
P o 0 0 o0 o]
ra o 0 0 0 o]
. Continue for more episodes
Inner loop continue p
Start Again with B state
cato\action A B C D B F 4w b b B s « If agent learn more and more, experience through many episode,
A - - - -0 - 4 o o 000 0O * It reaches to convergence value of matrix Q
@& - - -©®- @ 2 |o 0o 0o o 0 100
R= [od - - =0 - - Q=C 0 o 0 0 0 o
D - 00 -0 - D |0 80 0 0 0 O
z 0 - — 0 — 100 Z o 0o 00 0 O
F -0 - - 0 100 # o 0000 0 state\acton A B C D E F

Q(state, action) = Ristate, action) + y - Max| Q(next state, all actions)]
Q(8,7)=R(B,7F)+0.8 Max{Q(F,5), Q(F, E), Q(F,)}
=100 +0.8- Max{0,0,0} = 100

= No change in matrix Q — same value
= F goal state — Finish 2 episode

A - - - - 400 -
B - - - 320 - 500
Q= c - - - 320 - -
D — 400 256 - 400 -
E 320 - - 320 - 500
7 - 400 - - 400 500

After Normalization

state\acion A B C D E Fa

- 30

- - - 64 - 100
- - - &4 - -
- 80 51 - 80 -
64 - - 64 - 100
- 8 - - 80 100

N ;
64

C-D-B-F orC-D-E-F

Q-Learning: Representation Matters

« In practice, Value Iteration is impractical
* Very limited states/actions
« Cannot generalize to unobserved states

« Think about the Breakout game
* State: screen pixels

Image size: 84 X 84 (resized)

« Consecutive 4 images 256847844 rows in the Q-table!
« Grayscale with 256 gray
levels = 1069970>> 1082 atoms in the universe

Deep RL = RL + Neural Networks

Representaton
Learnig.
Mschine.
Lesrnig.

Al
Intligence

Geocentric Model Heliocentric Model

DeepMind Atari (©Two Minute Lectures)

Alpha Go Story

Source: https://ww tube.com/watch?time_continue=6&v=8tq1C8spV_g&feature=emb_title

https://www.youtube.com/watch?v=8dMFIJpEGNLQ

Game of Go

EEE e

Dia.5 Dia6 Din7
libortios atari capture rosult

—H

57

33 o 1eess 4% 12675

axa 16| 43.046.721 6% 24,318,165
5x5 25| @arxiol arxa0
oxo 81| aaxi0%® 1.089%10%
13013 189 | 4.3%10% 3.72497923%107
19x19 361 | 1.74x10777

2.08168199382¢10°

Deep Mind, acquired by Google in 2014, made headlines in 2016 after its AlphaGo program beat
a human professional Go player Lee Sedol, the world champion, in a five-game match.

AlphaGo (2016) Beat Top
Human at Go

— Human expert Supervised Learning ling

positions policy network

& — i CHC &—)

Learni
policy network

sk
ax
«®t 3k
o = 2 | Lee Sedol (9p)
i} DeepMind challenge match
SR - Top player of
SR - = post decade
%o ® | eats
AlphaZero N
- B] Nature match Fan Hui (2p)
times re
o ook 200k 300k 400k 500k 600k 70k 50 ’ T crorion
Training Steps
Beats Beats
Kos.
A more general program, AlphaZero, beat the most powerful programs playing go, chess and
shogi (Japanese chess) after a few days of play against itself using reinforcement learning.
5000
4000
AlphaGo Known 2000
°
£ 2000
]
4
S 1000
0
-1000
-2000
) 5 10 15 20 25 30 35 40

— AlphaGo Zero 40 blocks <=+ AlphaGoLee eeee AlphaGo Master

“In part because few real-world problems are as constrained as the games on
which DeepMind has focused, DeepMind has yet to find any large-scale
commercial application of deep reinforcement learning.”

Aug 14,2019 Wired : https://www.wired.com/story/d inds-losses-future-artificial-intelligence;

tﬁ’ ? []

‘Source : Simulation and Automated Deep Learning

To date, for most successful robots operating in

the real world: Deep RL is not involved

To date, for most successful robots operating
in the real world: Deep RL is not involved

But... that’s slowly changing:
Learning Control Dynamics

But... that’s slowly changing:

But... that’s slowly changing:

Object detection using DRL
- B o

o :

r W

=t

\

\!“ﬁ iy
e T~ 8

of Region Proposal Networks for Object Detection, 2018

Deep Reinforcement Learning

* Hierarchical Object Detection wi

The outline of application domains of
RL in healthcare

Source : Yu, C., Liu, J., & Nemati, S. (2019). Reinforcement learning in healthc:
arXiv:1908.08796.

: A survey. arXiv preprint

Deep Reinforcement Learning

Efficient Object Detection in Large Images using Decp Reinforcement Learning [2020]

3d Pose Network
5

Pilot study for walking person detection using

Reinforcement [earning

Test results of Walking person dataset:

NP AR

BN PV NI
— 11

frequency

orientation

Histogram of Gradients (HoG)
Dalal & Triggs, 2005

Deformable Part Model
Felzenswalb, McAllester, Ramanan,
2009

[REEEEN

» The bounding box shape is not correct but it is observable that the
model has got the idea of how to detect a person in an image.
* Sometimes it zooms in too much on the person.

Test results of Walking person dataset:

Deep-RL in Call Centre

Precision-Recall curves

2.class Precision-Recall curve: AP=0 60

Average precision-Recall score:
0.60

CRSRL: Customer Routing System Using deep Reinforcement Learning [2019]

‘generate

o
ke
f :

-

reward |77

L]
abserv

Sate 1 (non-hotline capaciy

Deep-RL in Financial markets

Deep Reinforcement learning in
FElectrical Engineering

e MachineLearing and iforcement Learing nFnanee Specalization

Reinforcement Learning in Finance

s e

Deep reinforcement learning for strategic bidding in electricity markets
¥ Ye, D Qiu, MSun.. - .. on Smart Grid, 2019 - eeexplore.ieee.org

Bilevel optimization and reinforcement learning (RL) consiiuts the stafe.of the.art
frameworks for modeling strategic bidding decisions in deregulated electriclty markets.
However, the former neglects the market participants' physical non-convex operating

#r 99 Cedby7 Related artices

Increasing performance of electric vehicles in ride-hailing services using deep
reinforcement learning
'RGla JR Donadee, BK Pafersen - arXiv preprint arXiv .. 2019 - andvorg
New forms of on-demand transportaion such es rde-hailng and connected aulonomous
vehicles are prolfrating yat aro a challenging use case for electri vehicles (EV). This
Ppaper explores the feasibility of using deep reinforcement learning (DRL) to optimize a
#r 99 Ctedby3 Relaled aricies Al4versions 9>

) Deep reinforcement learning of energy management with continuous
control strategy and traffic information for a series-parallel plug-in hybrid electric.
bus

YWy, H Tan, 1 Pang, H Zhang, H Ha - Applied Energy, 2019 - Elsovier

" ofer an for emissions

displacement under the current Energy
for improving hybrid Inthis peper
¥r 99 Citedby32 Related articies All 8 versions

Effective Charging Planning Based on Deep Reinforcement Learning for
Electric Vehicles

G Zhang, Y Luu, F Wu, B Tang .. - IEEE Transactions on ... 2020 - ie@explore iee.01g

Electric vehicles (EVs) are vievied as an atiraclive opton (o reduce carbon emission and fuel
consumption, but the popularization of EVs has boen hindored by the cruising range.

limitation and the inconvenient charging process. In public charging stations, EVs usually

Challenge: RL & Real-World Applications

Remind

Open Challenges. Two Options:

Supervised . .
learning: teach by 1. Real world observation + one-shot trial & error

example

2. Realistic simulation + transfer learning

1. Improve
Transfer
Learning

Conclusion

Reinforcement learning addresses a very broad and relevant
question: How can we learn to survive in our environment?

We have looked at Q-learning, which simply learns from experience.
No model of the world is needed.

‘We made simplifying assumptions: e.g. state of the world only

depends on last state and action. This is the Markov assumption. The

model is called a Markov Decision Process (MDP).

There are many extensions to speed up learning.

There have been many successful real world applications.

Thinking Outside the Box:
« Create an (infinite) set of simulation environments to learn in
so that our reality becomes just another sample from the set.

Key Takeaways for Real-World Impact

* Deep Learning:

+ Fun part: Good algorithms that learn from data.
* Hard part: Good questions, huge amounts of representative data.

* Deep Reinforcement Learning:

+ Fun part: Good algorithms that learn from data.
+ Hard part: Defining a useful state space, action space, and reward.
+ Hardest part: Getting meaningful data for the above formalization.

References

+ MIT Deep Learning Basics: Introduction and Overview with TensorFlow
Univ. of Alberta
+ http://www.cs.ualberta.ca/~sutton/book/ebook/node1.html

* www.cs.ualberta.ca/~sutton/book/the-book.html

+ Sutton and barto,
* Univ. of South Wales
* http://www.cse.unsw.edu.au/~cs9417ml/RL 1/tdlearning.html
https://people.revoledu.com/kardi
http://mnemstudio.org/path-finding-g-learning-tutorial.htm

einforcement Learning an introduction.”

+ MIT Deep Learning and Artificial Intelligence Lectures
+ hitps://www.analyticsvidhya.com/blog/2017/01/introduction-t learning-impl
+ hitps://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/

+ https:/www.learndatasci.com/tutorials/rei g-learning-scratch-python-openai-g

