Artificial Intelligence Module 8: Learning from Example	Module 8: Learning from Example PART 8.1 : Supervised learning : Introduction PART 8.2 : Naive Bayes, PART 8.3 : Discriminative Learning Perceptron, Neural Network PART 8.4 : Introduction to Deep Learning 		
Dr. Chandra Prakash			
(Slides adapted from StuartJ. Russell, B Ravindran, Mausam, Dan Klein and Pieter Abbeel, Partha P Chakrabarti, Saikishor Jangiti)			

How can we learn?	Machine Learning
 Skill refinement one can learn by practicing, e.g playing the piano. Knowledge acquisition one can learn by experience and by storing the experience in a knowledge base. Example - rote learning (process of memorizing information based on repetition). Problem Solving Solve a problem, learn from this experience. Next time see similar problem, solve it more efficiently. not usually involve gathering new knowledge but may involve reorganisation of data or remembering how to achieve to solution. Taking advice	 Up until now: how use a model to make optimal decisions Machine learning: how to acquire a model from data / experience Learning parameters (e.g. probabilities) Learning structure (e.g. BN graphs) Learning hidden concepts (e.g. clustering, neural nets) Today: model-based classification

_	Pi	ayTennis: tra	Exa ining exa	mples	e 3 : Pl	ay Tennis	Learning from Example
D	ay Outlook	Temperature	Humidity	Wind	PlayTennis		representation of the image to get the desired
I	1 Sunny	Hot	High	Weak	No		output:
	2 Sunny	Hot	High	Strong	No		
	Overcast	Hot	High	Weak	Yes	Find the output ?? x=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)	
	5 Rain	Cool	Normal	Weak	Ves		f(m) = f(m) = f(m)
	6 Rain	Cool	Normal	Strong	No		
1	7 Overcast	Cool	Normal	Strong	Yes		
1	8 Sunny	Mild	High	Weak	No		$f(\mathbf{m}) = \text{``tomato''}$
I	9 Sunny	Cool	Normal	Weak	Yes		
D	10 Rain	Mild	Normal	Weak	Yes		医安特因为热封
E	11 Sunny	Mild	Normal	Strong	Yes		$f(\mathbf{m}) = "COW"$
D	12 Overcast	Mild	High	Strong	Yes		
	13 Overcast	Hot	Normal	Weak	Yes		
	14 Kain	MIIId	riign	strong	INO		9 C 7 Ballos Credit L. Lazebilik
						21	

When to Use Transfer Learning?

• Situation where what has been learned in one setting is exploited to improve generalization in another setting.

- Task A and B have the same input x
- You have a lot more data for Task A than Task B.
- Low level features from A could be helpful for learning B.

