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Module 8: Learning from Example

« PART 8.1 : Supervised learning : Introduction
* PART 8.2 : Naive Bayes,
* PART 8.3 : Discriminative Learning
— Perceptron, Neural Network
* PART 8.4 : Introduction to Deep Learning

What is Learning?

+ Learning is an important area in Al, perhaps more so than planning.
— Problems are hard -- harder than planning.

Recognised Solutions are not as common as planning.

A goal of Al is to enable computers that can be taught rather than programmed.
Learning is an area of Al that focusses on processes of self-improvement.
Information processes that improve their performance or enlarge their knowledge bases
are said to learn.
+ Why is it hard?

— Intelligence implies that an organism / machine must be able to adapt to new situations.

It must be able to learn to do new things.

— This requires knowledge acquisition, inference, updating/refinement of knowledge base, acquisition of
heuristics, applying faster searches, etc.

How can we learn?

* Your View ??

How can we learn?

«  Skill refinement « Taking advice
— one can learn by practicing, e.g playing the — Similar to rote learning although the knowledge that
piano. is input may need to be transformed (or
+ Knowledge acquisition operationalised) in order to be used effectively.
one can learn by experience and by storing Induction

the experience in a knowledge base. — One can learn from examples. Humans often

classify things in the world without knowing explicit
rules. Usually involves a teacher or trainer to aid the
classification.

— Example - rote learning ( process of
memorizing information based on repetition).

Problem Solving
Solve a problem, learn from this experience. Discovery . .
Next time see similar problem, solve it more — learns knowledge without the aid of a teacher.
efficiently. *  Analogy

— not usually involve gathering new knowledge
but may involve reorganisation of data or
remembering how to achieve to solution.

— Ifa system can recognise similarities in information
already stored then it may be able to transfer some
knowledge to improve to solution of the task in
hand.

Machine Learning

Up until now: how use a model to make optimal decisions

Machine learning: how to acquire a model from data / experience
— Learning parameters (e.g. probabilities)

— Learning structure (e.g. BN graphs)

— Learning hidden concepts (e.g. clustering, neural nets)
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Why to use Machine learning Techniques

Difference between A

The Traditional Programming Paradigm

Recall : How we learn
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Model-Based Classification

* Model-based approach

— Build a model (e.g. Bayes’ net) where bc
the output label and input features are
random variables

— Instantiate any observed features

— Query for the distribution of the label
conditioned on the features

* Challenges
— What structure should the BN have?
— How should we learn its parameters?




Naive Bayes for Digits

« Naive Bayes: Assume all features are independent effects of the label

+ Simple digit recognition version: G
— One feature (variable) F;; for each grid position <i,j>
Feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image
Each input maps to a feature vector, e.g. e Q o G
’1 — (Fo0=0 Fo1=0 Fo2=1 Fo3=1 Fpa=0 ...F1515=0)
— Here: lots of features, each is binary valued
* Naive Bayes model: P(Y|Fpgq...Fis15) x< P(Y) [[ P(F; ;1Y)

ij
* What do we need to learn?

Naive Bayes

*  Bayes classification
P(Y|X)x PX|Y)P(Y)=P(X,, X, |Y)PY)
Difficulty: learning the joint probability P(X,, - X,1C)
»  Naive Bayes classification
Assume all input features are conditionally independent!
P(X, Xy X, | V)= P(X, | Xy X, VIP(X o X, | V)
=P(X | NP(X,,--, X, |Y)
=P(X, |V)P(X, |V)~P(X, | Y)

Example 1: Conditional Probabilities

P(Y) P(Fs1=on|Y) P(Fss=on|Y)
1 0.1 11]0.01 1]0.05
2 |01 L 2 (0.05 21001
3 101 L 31005 31090
4 |01 41030 4 (080
5 |01 5 10.80 510.90
6 |0.1 — 6 |0.90 6 10.90
7 101 ] 7 10.05 71025
8 |01 1 8 | 0.60 8 |0.85
9 0.1 9 [0.50 9 | 0.60
0 [0.1 0 | 0.80 0 |0.80

Naive Bayes for Text (A Spam Filter)

» Bag-of-words Naive Bayes:
— Features: W; is the word at position i
— As before: predict label conditioned on feature variables (spam vs. ham)
— As before: assume features are conditionally independent given label
New: each W is identically distributed Word at position
i, not it word in

* Generative model: P(Y,Wy...Wy) = P(Y) [[ P(W;|Y) the dictionary!
i -_

» “Tied” distributions and bag-of-words
— Usually, each variable gets its own conditional probability distribution P(F|Y)
— In a bag-of-words model
« Each position is identically distributed
« All positions share the same conditional probs P(W[Y)
+ Why make this assumption?
— Called “bag-of-words™ because model is insensitive to word order or reordering

Example 2: Spam Filtering

© Model:  P(Y,Wi...Wy,) = P(Y) [[ P(W;]Y)
i
* What are the parameters?

P(Y) P(W|spam) P(W|ham)
the : 0.0156 the : 0.0210
to 0.0153 to 0.0133
and : 0.0115 of : 0.0119
of 0.0095 2002: 0.0110
you : 0.0093 with: 0.0108
a : 0.0086 from: 0.0107
with: 0.0080 and : 0.0105
from: 0.0075 a 0.0100

« Where do these tables come from?

Spam Example

‘ Word P(w|spam) P(w|ham) Tot Spam Tot Ham ‘
| (prior) 0.33333__ 0.66666 11 0.4

P(spam | w) = 98.9




Example 3 : Play Tennis

PlayTennis: training examples

Day || Outlook Temperature Humidity ~Wind | PlayTennis

Dl || sunny Hot High Weak No

D2 | Sunny Hot High  Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal  Strong No Find the output ??

D7 || Overcast Cool Normal ~ Strong Yes y . .
) ) x=(Outlook: mperature=Cool,

DS || Sunny Mild High Weak No Humidity=Hi S

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal ~ Weak Yes

DU || Sunny Mild Normal  Strong Yes

D12 Overcast Mild High Strong, Yes

D13 Overcast Hot Normal Weak Yes

D4 Rain Mild High  Strong No

21

Learning from Example
Apply a prediction function to a feature
representation of the image to get the desired
output:

“ ) fURD = “apple”

D = “tomato”
ﬂ) — “CoOwW”

Real Brain Interconnections

Human brain contains a massively interconnected net of 10'°-10'" (10 billion) neurons (cortical cells)

Neurons communicate via spikes

Output spike roughly dependent on whether
sum of all inputs reaches a threshold
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Neural Network: Introduction

A neural network can be defined as a model of reasoning based
on the human brain.
Inspired by the human brain.
Some NNs are models of biological neural networks
Human brain contains a massively interconnected net of 10'0-10'!
(10 billion) neurons (cortical cells)
60 trillion connections, synapses, between them
— Massive parallelism — large number of simple processing units

Connectionism — highly interconnected
— Associative distributed memory

« Pattern and strength of synaptic connections

Artificial Neural Network

+ Consists of a number of very simple processors, also called neurons,

— Analogous to the biological neurons in the brain.
« Neurons are connected by weighted links passing signals from one neuron to another.
+ The output signal is transmitted through the neuron’s outgoing connection.

+ The outgoing connection splits into a number of branches that transmit the same signal.
— The outgoing branches terminate at the incoming connections of other neurons in the
network.

Outputs] 3 Weighted Sum
Myesinated axon

Threshold




Three Steps for Machine Learning

N

Neural Step 2: goodness Step 3: pick the
Network of function best function

Machine Learning is so simple ......

+
“Neuron”
Neural Network

Different connection leads to different network structures

Network parameter 6: all the weights and biases in the “neurons”

The Perceptron . Neural Network with one hidden Neuron and one

hidden layer
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Perceptron : When we have more than one input?

Neuron f:RX >R

z=aw +a,w, +--+agw, +b

+ L Z 0'(2) —a

Activation
function

bias

Perceptron : Single Neuron- Linear Separability

input a \

nput b —— = oupuey
input ¢ /f
logical OR
logcal AD ' e &
2 dividing e
diiding e o

0o Loy

Single Neuron and Linear Inseparability

Input A Input B XOR Perceptron with threshold units fails if classification

0 0 ° task is not linearly separable

« Example: XOR

0 1 1 « Can a perceptron separate the 1 outputs from the 0
1 0 1 outputs?

* No single line can separate the “yes” (1) outputs
1 1 0

from the “no” (0) outputs!

Minsky and Papert’s book showing such negative
results put a damper on neural networks research
for over a decade!

Some problems can’t be solved with just a single
simple linear classifier.

You can use multiple nodes working together to
solve many of these problems.

(0o




How do we deal with linear inseparability?

 Idea I: Multilayer Perceptrons
— Removes limitations of single-layer networks
+ Can solve XOR (i)
— Example: Two-layer perceptron that computes XOR
~ Output is +1 ifand only if x +y - 28 (x +y - 1.5) - 0.5 > 0

y
» Idea 2: Activation functions

— Non-linearities needed to learn complex (non-linear) representations of data, otherwise the
NN would be just a linear function

3t eons

— More layers and neurons can approximate more complex functions

A solution: Multi-layer Perceptron (MLP)

logical XOR
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...Use more than one node!

Multilayer Perceptron: What does it do?

y @~/

Activation Function/ Threshold

threshold

autput

stop function

outpat

logistic function y = 1/(1 +¢%)

Need of Activation functions

* The purpose of activation functions is to introduce non-linearities into
the network

A neural network without an activation function is essentially just a
linear regression model.

Linear Activation functions produce linear
Non-linearities allow us to approximate
decisions no matter the network size
arbitrarily complex functions

@ -

Popular Activation Functions

Sigmoid Function Hyperbolic Tangent
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Fully Connect Feedforward Network

Matrix Operation
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Fully Connect Feedforward Network
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Fully Connect Feedforward Network

o
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This is a function. 0.62 0 0.51
Input vector, output vector f([ ) = ().83] f([OD = [0.85

Different parameters define different function

Fully Connect Feedforward Network

Layer  Output

Layer Hidden
Layers




Neural Network Neural Network

Using parallel computing techniques

y|=f(xD to speed up matrix operation

Features
Output Layer
« The features are the elements of your input vectors.
* The number of features is equal to the number of nodes in the input layer of the network Feature extractor replacing

Calezory Eeaturey feature engineering
Housing Prices No. of Rooms, House Area, Air Pollution, Distance from facilities, Economic Index city, —

Security Ranking etc. X .y
Spam Detection presence or absence of certain email headers, the email structure, the language, the

frequency of specific terms, the ical correctness of the text etc. X, n
Speech noise ratios, length of sounds, relative power of sounds, filter matches % Y2
Recognition B

5]

Cancer Detection | Clump thickness, Uniformity of cell size, Uniformity of cell shape, Marginal adhesion, »

Single epithelial cell size, Number of bare nuclei, Bland chromatin, Number of normal X g P

nuclei, Mitosis etc. — ¥Mm
Cyber Attacks IP address, Timings, Location, Type of ication, traffic details etc. I ¢ —
Video Text matches, Ranking of the video, Interest overlap, history of seen videos, browsing npu Output = Multi-class Classifier

ions | patterns etc. Layer Hidden Layer
Image Pixel values, Curves, Edges etc. Layers
Classificati
Example Application

Example Application

Input 2 »M»z Output » Handwriting Digit Recognition

" Neural
Th? Lnassy Network - ..
is “2” oo
What is needed is a Yio -
function ......
16x 16 =256 Input: output:
Ink — 1 256-dim vector 10-dim vector

No ink — 0




Learning Process

A model is defined by its architecture and its parameters

— The labelling strategy matters to successfully train your models. For example, if

you’re training a 10-class (0,1,2,...9) classifier under the constraint of one digit per
picture, you might use one-hot vectors to label your data.

Model
+
Parameters
Closs >
- Activation function
- Optimizer .
- Hyperparameters Gradients

Example Application
Layfr 1 Layer2

\\

A function set containing the

Layer
Layers
You need to decide the network structure to
let a good function in your function set.

Y, IR
candidates for [
Handwriting Digit g
Recognition — Y1;)
Input — ~ Output
Layer Hidden

Three Steps for Machine Learning

Training Data
¢ Preparing training data: images and their labels
~
S’ gy 0 gy L,{ gy / wqr
Neural Step 2: goodness Step 3: pick the
Network of function best function
)
q l19H 3 112" ‘ ”1" 3 113H
Machine Learning is so simple ......
Using the training data to find
the network parameters.
Network Error Matrices Again
ror to guide NOWWe
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Error Gradient

E= (desired - actual)® /N

school level calculus (chain rule)

Climbing Down the Network ErrorLandscape

Cost / Loss

s a cost value

Given a set of network parameters 8, each example

s

2 —

- Given a set of y2 0
dE/dw;=- ¢;.0;.(1- 0). o; y’ parameters :
P ¢ : A . g :
> w P10 0
10 ~
y y
We need to find this gradient Cly,y)=-— Vilny;
S 7|
Cost can be Euclidean distance or cross entropy of the network output and target
Total Loss Three Steps for Machine Learning
Total Loss:

For all training data ...

il
Cl

(O]l
c

[~ b

[/ ]kl

Find a function in
function set that

minimizes total loss L

Find the network

parameters 0 that
minimize total loss L

Step 1: R
Step 3: pick the

best function

Step 2: goodness
of function

Neural
Network

Machine Learning is so simple ......

Gradient Descent

0
— Compute dL/0w,
wy
—udL/ow,
Compute dL/dw,
wa| -0.1 0.05
. —p 0L/ 9w,
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Gradient Descent

ompute dL/0w; Compute dL/dw,

(02— , s S—— ;|
0.2 .
" —udL/dw, 22 —poL/owy -

Compute dL/dw, Compute dL/dw,

-0.1 0.05 0.15
—udL/ow, —uoL/dw,

ceseee S
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Local Minima

Local minima

Global minima

* NN can get stuck in local minima for small networks.
+ For most large networks (many weights) local minima rarely occurs.

It is unlikely that you are in a minima in every dimension simultaneously.

Besides local minima

\ Very slow at
the plateau

oL /aw | i 9L /dw aL/aw\
~0 =0 o=

The value of the parameter w

Overfitting in ANNs

RMSE
; Validation data set, D,,;
H
H Training data set, D,
0 Stop Training iterations

Model Selection

80 Training | Testing
¢ 1| 319 [350
« 2 154 | 184
o 3 153 | 18.1
0 4 149 [ 282

' : ° ‘ ° 5 128 |232.1

—Training —Testing

A more complex model does not always lead to better
performance on testing data.

This is Overfitting. - Select suitable model

Model Selection

+ There is usually a trade-off between bias and variance.
+ Select a model that balances two kinds of error to minimize total error
* What you should NOT do:

Testing Set Testing Set

Model 1 Err=0.9 (real)
Model 2 Err=0.7
Model 3 Err=0.3| Err>0.5

Experimental Evaluation for ML Models

Evaluating the performance of learning systems is important because:

— Learning systems are usually designed to predict the class of future unlabeled data
points.

Typical choices for Performance Evaluation:
— Error
— Accuracy
— Precision/Recall
Typical choices for Sampling Methods:
— Train/Test Sets
— K-Fold Cross-validation




Confusion Matrix

N-fold Cross Validation

Predicted Class
e, Model 1 | Model 2 Model 3
Positive Negative Err=02|Err=04 Err=04
- Sensitivity
Positive | True Positive (TP) Fa,]se Nega“_‘_e_(F_N] TP Err=0.4 |Err=0.5 Err=0.5
Type II Error T
Actual Class
s Err=0.3|Err=0.6 Err=0.3
False Positive (FP) ! Specificty,
Negative 3 R True Negative (TN) TN
Type I Error TNTFP) Avg Err | Avg Err  Avg Err
— Negative Predictive Accuracy =0 =05 =04
Precision
Value TP+ TN
(T'L—PFD ™ TP+TN+FP+FN)
TN+ M —’m Testing Set
public private
Input Layer 1 Layer 2 Layer L Output
= g —V1
X — Y2
. - —
= — Vu

Input T~ Output

Layer Hidden Layers

Layer

* Q: How many layers? How many neurons for each layer?

+ Intuitio

« Q: Can the structure be automatically determined?
— E.g. Evolutionary Artificial Neural Networks
« Q: Can we design the network structure?

Convolutional Neural Netwo

NEURAL NETWORK ARCHITECTURES

EXAMPLE : SOLVE NN BY HAND

Back Propagation Neural Network

1. Determine the architecture
= how many input and output neurons; what output encoding
« hidden neurons and layers
2. Initialize all weights and biases to small random values, typically €[-1,1]
3. Repeat until termination criterion satisfied:
- Present a training example and propagate it through the network
(forward pass)
- Calculate the actual output
- Adapt weights starting from the output layer and working backwards
(backward pass)
w,,@+D=w, (O)+Aw, W, () - weight from node p to node g at time

Aw,, =177-8,-0, _weight change a
»
5,=(d, —0,)-0,-1~0,) - for output neuron i
W,
5,=0,-1-0,) 3w, 5, _for hidden neuron j g
’ (the sum is over the i nodes in the  Op P
layer above the node /)

Back Propagation Neural Network

Consider an (2 classes, 2 dim. input data) ,

The training set is :
ex.1: 0.6 0.1 | class 1 (banana)
ex.2: 0.2 0.3 | class 2 (orange)




Back Propagation Neural Network

Back Propagation Neural Network

Neural Network architecture Questions
*How many inputs?

*How many hidden neurons?

*How many output neurons?

*What encoding of the outputs?
eInitial weights and learning rate
*What should be the stopping Criteria

Let’s n=0.1 and
the weights are set as in the picture.

what will be the final weight after 14,2 iteration.

Inputs Encoding

The training set is :
ex.1: 0.6 0.1 class I (banana)
ex.2: 0.2 0.3 | class 2 (orange)

How many inputs?
 Same as no of variables
* Number of samples
How to encode the inputs for nominal attributes?

Example - nominal attribute A with values none, some and many
Local encoding
* use a single input neuron and use an appropriate number of distinct values to correspond
to the attribute values, e.g. none=0, some=0.5 and many=1

Distributed (binary) encoding
* use one neuron for each attribute value which is on or off (i.e. 1 or 0) depending on the

Network architecture

*  How many hidden neurons?
* Heuristic :
* N=(input + output) /2

*  How many output neurons?

*  What encoding of the outputs?

* Local encoding

« 1 output neuron (<0.2 —class 1, > 0.8 — class 2, in between- ambiguous
class(class 3)
* Distributed (binary, I-of-n) encoding
* No of outputs= number of classes
« 10 for class 1
* 01 for class 0

Back Propagation Neural Network

Motivation for choosing binary over local encoding

Provides more degree of freedom to represent the target function (n times as many
weights available)

The difference between the output with highest value and the second highest can be
used as a measure how confident the prediction is (close values => ambiguous
classification)

Stopping Criteria

« The stopping criteria is checked at the end of each epoch:
* The error (mean absolute or mean square) at the end of an epoch is below a threshold
Al training examples are propagated and the mean (absolute or square) error is calculated
* The threshold is determined heuristically — e.g. 0.3
* Maximum number of epochs is reached
«  Early stopping using a validation set (TTS)

« It typically takes hundreds or thousands of epochs for an NN to converge




Back Propagation Neural Network

Back Propagation Neural Network

1. Forward pass for ex. 1 {calculate the outputs o;and o, ]

0,=0.6, 0,=0.1, target output 10, i.e. class 1

* Act ions of the hidden units:
1 *Wist 0,%Wy+b=0.6%0.1+0.1%(-0.2)+0.1=0.14
0,=1/(1+e™*) =0.53

» Calculate

* nets, 04?7

* nets, 0s2??

* mnets, 06 ??

* nets, 0:??

1. Forward pass for ex. 1 - calculate the outputs o, and o,
0,=0.6, 0,=0.1, target output 10, i.e. class 1
* Activations of the hidden units:
net;= 0, *W,+ 0,*Wy;+b;=0.6+0.1+0.1%(-0.2)+0.1=0.14
0,=1/(1+e) =0.53

net,= 0, *w, i+ 0,%W,,+b=0.6*0+0.1%0.2+0.2=0.22
o0, =1/(1+em) =0.55

0g=1/(1+e71%) =0.65

+ Activations of the output units:
Dete= 0, *Wagt 0,5W i+ 05* W, +b=0.53%(-0.4)+0.55%0.1+0.65%0.6-0.1=0.13
0=1/(1+e™6) =0.53

[ nete= 0, *W, gt 0,*W,+b=0.6*0.3-+0.1%(-0.4)+0.5=0.64
[ 0,=1/(1+e"7) =0.63

net= 0, *Wyrt 0, Wt 05w, +h,=o.53*o.z+o.55*(-o.1}+o.65*(41.z)+o.6=o.sz]

Back Propagation Neural Network

Back Propagation Neural Network

« 2. Backward pass for ex. 1
[ + Calculate the output errors §; and 6,] (note that dg=1, d,=0 for class 1)
8= (dg-00) * 0, * (1-0)
8,=(d,-0,) * 0,* (1-0,)

[- Calculate the new weights between the hidden and output units (n=0.1) ]
Awz=n* 8 * 0y
Wit = Wy ol + Aw

AW =n* 8 * 0y
W™ =Wyt + Aw,,
Similarly for w "™, w,"", we " and wg,""

remember: biases are weights with input 1):
Ab=n*8,* 1
b = bk + Abg
Similarly for b,

« 2. Backward pass for ex. 1
+ Calculate the output errors §; and 8, (note that d=1, d,=0 for class 1)
8= (dg-0) * 0, * (1-0.)=(1-0.53)*0.53*(1-0.53)=0.12
8, = (d,-0,) * 0,* (1-0,)=(0-0.63)*0.63*(1-0.63)=-0.15

+ Calculate the new weights between the hidden and output units (n=0.1)
Aws=1 * 8, * 0, = 0.1%0.12*0.53=0.006
Wt = W+ Aw, = -0.4+0.006=-0.394

Awy=1* 8, * 0, = 0.1%-0.15%0.53=-0.008
W3 = w0+ Awy, = 0.2-0.008=-0.19
Similarly for w "™, w,,"", we " and wg,""

For the biases by and b, (remember: biases are weights with input 1):
Abe=1* 8 * 1=0.1%0.12=0.012

b = b + Abg =-0.1+0.012=-0.012

Similarly for b,

Back Propagation Neural Network

Back Propagation Neural Network

[ * Calculate the errors of the hidden units §,,8, and 6;]
8= 0,7 (1-0,) ¥ (Wag™ 8 +W3T* 8,)=
.53%(1-0.53)(-0.4%0.12+0.2*(-0.15))=-0.019

Similarly for ; and §

+ Calculate the new weights between the input and hidden units (n=0.1)

Aw ;=1 * §; * 0, = 0.1%(-0.019)*0.6=-0.0011
W = w0+ Aw, = 0.1-0.0011=0.0989

Similarly for o™ , W, ™ , w,,"" , w, 2" and w,;*"; b,, b, and b,

3. Repeat the same procedure for the other training examples
« Forward pass for ex. 2...backward pass for ex.2...
« Forward pass for ex. 3...backward pass for ex. 3...

« Note: it’s better to apply input examples in random order




Back Propagation Neural Network

4. At the end of the epoch — check if the stopping criteria is
satisfied:
« if yes: stop training
«if not, continue training:
+ epoch++
*gotostep 1

Vision and Deep Learning

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Traditional ML vs Deep Learning

NxN fv.f2.f%) CLASSIFIER
30 282 Classic Roundness of face ALGORITHM
25.8 p e SVM
25 Machine Random Foraest Mark
2 Learning
16.4
15
11.7
10
73 6.7
5.1
s [or T[] l I N | cEEE i
A &
, o B H = = 8
Neural Networks: The Features Learned N
— e —_ Number of Weights in s
image with the first hidden layer
+ Deep neural networks are good at detecting features at multiple layers of abstraction 28x28x3 :
pirels will be 2352

The connection weights between layers can be thought of as feature detectors or filters

Lowest layer weights detect generic features, higher level weights detect more specific features

Features learned in one layer are composed of features learned in the layer below

o
S

800x600
1024x768 1024

Image with
200x200x 3

pirels

Number of weights in
the first hidden layer
will be 120,000




Feature Extraction Using Convolution

Fully Connected Networks
— Fully connect all the hidden units to all the input units.
— With small images it was computationally feasible to learn features on the entire image.
— But, with larger images learning features it is very computationally expensive
[
ViA I
A

I

fuly connecteduntt locallyconnected units.
Vith 363 receptive field
Locally Connected Networks
— Restrict the connections between the hidden units and the input units,
« Allow cach hidden unit to connect to only a small subset of the input units.
« Each hidden unit connects to only a small contiguous region of pixels.
— This idea of having locally connected networks also draws inspiration from how the early visual system is wired
up in biology.

+ Neurons in the visual cortex have localized receptive fields (i.c., they respond only to stimuli in a certain
location).

ANN: Too many parameters

* We know it is good to learn a small model.
* From this fully connected model, do really need all the edges?
» Can some of these be shared?

Can you recognize ??

i |
34

learned features over small patches sampled randomly from the larger
image

Computer Vision Problem

vertical edges

horizontal edges

e
0

Neural network with many convolutional layers

Natural images have the property of being ™*stationary™, meaning that the statistics of one part of the image are the same as any other
part,

‘This suggests that the features that we leam at one part of the image can also be applied to other parts of the image, and we can use the
same features at all locations.

—
= rruck
= van

o 0 —sievas

INPUT  CONVOLUTION .+ RELU  POOLING  CONVOLUTION + RELU  POOUNG AN FUUY sormax

FEATURE LEARNING CLASSIFICATION
* 3 Layer in a convolutional network:

— Convolution (CONV)
— Fully connected (FC)

- Pooling (POOL)

Convolution

+ Convolution is a pointwise multiplication of two functions to produce
a third function.

* Primary purpose of convolution in CNN is to extract features from
the input image.

* Matrix formed by sliding the filter over the image and computing the

dot product is called the ‘Convolved Feature’ or ‘Activation Map’ or
the ‘Feature Map®.




Convolution Example: Vertical Edge Detection Detecting Vertical edges

6%6 =36
" [10[10]10[ 0 0] 0 T
1011001 0{30/30| 0
]&ukoo o/10(10{0 (0|0 2 ol
2 2 10(10{10{ 0|0 | 0 TTola 0/30(30| 0
- :
0, L/1)1]|0 4 12123322 TTola 0 [30(30| 0
olo 101+ 01{30/30| 0
=L ﬂ']"l 10[10{10/ 0] 0|0
o|j0|1|1|0
0|1(1|0]|0
Convolved
Image
Featu re « Incase of ANN # parameter to train = 36*16 = -

« In case of CNN # parameter to train = §

Filter Weights Padding

*  Two problems
— Shrinking output

1 1 1 1 0 -1 3 0 3 Through away info from edges: Pixel at the corner are
used much lesser then the pixel at middle
0 0 0 2 0 -2 10 0 - + Padding is used to preserve the original dimensions of the
10 input
=il =il (=l o -1 3 0 3 «  Zeros are added to outside of the input
. . . = + Number of zero | depend the size of the kernel
Horizontal Filter Sobel Filter Schorr Filter umber of zero fayers depend upon fhe size of fhe keme
o|lojojo|o|o|oO
W Wy W3 Convolutional Neural Networks O IERENENENEN O 2[2[3]1]2
. . ojo|1]|1|1]|0]|0O
Wi Ws  we autf)matlcally estimates the > AR x ; : j ;’ :
weights of the filter ofofafafafo]o = A
W7 Wg Wy ofolzf1fofo]o x| AEInE
olofofo]o]o]o
19 March 2024 5x 5 (with padding) 5x5
. . Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
Strided Convolutions I : s D
0 -1 0
—— ——
* Stride defines the number of nodes a filter moves between two consecutive convolution e

operations

0
2
1
0
0
[

0
+ Likewise, we have a stride to define the same when applying pooling 1o
* When the stride is 1 then we move the filters to 1 pixel at a time. ElO
s - . . wir:,4,2)
© When the stride is 2 then we move the filters to 2 pixels at a time and so on. 3 1 1
0
100
Bias b0 (IxIx1) Bias bl (IxIx1)
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One layer of a convolutional network

Non Linearity (ReLU)

/ N
/ \
!
5 | +bl
'
' *
i
'
'
o 3x3x3
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+

0 6x6x3 b2
' *
i
' a0l

N 3x3x3 ¢

S - will go] alll 4%4%2

witl
. oo \ 2 filters means two
211 = wlll glo] 4 b1l units here

alll = g( 711

ReLU stands for Rectified Linear Unit for a non-linear operation.
The output is f(x) = max(0,x).
Why ReLU is important :

— ReLU’s purpose is to introduce non-linearity in our ConvNet.

— Result should be non-negative linear.
Other non linear functions

— tanh or

— sigmoid il

stamois Hyparotc angnt e

Pooling [Downsampling] Layer

A Basic Module of the CNN

+  Used to downsample the representation-size after convolution step
Pooling layers section would reduce the number of parameters when the
images are too large.

Spatial pooling also called subsampling or downsampling which reduces
the dimensionality of cach map but retains important information.

Ensures robustness against minor rotations, shifts, corruptions in the image
+ Popular approaches:
~ Max-pooling , Average Pooling, Sum Pooling, etc

224x224x64
5 112x112x64 Single depth slice
x (NI 2 | 4
max pool with 212 fers
56 7|8 andsuie? nﬂ
T 3210 4
112|3|4

—— 112
224 downsampling =
12

224

y

Pooling

L]

Convolution

L}

Image

Concluding Remarks

Deeper is Better?

Step 1:
Neural

Network

Step 2:

. goodness of

function

-

What are the benefits of deep architecture?

nction

Layer X  Word Error

Size Rate (%)
1X 2k 24.2
2 X 2k 20.4 Not surprised, more
3X2k 18.4 parameters, better
4 X2k 17.8 performance
5X 2k 17.2
7X 2k 17.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using
Context-Dependent Deep Neural Networks." Interspeech. 2011.




Deep = Many hidden layers =
=
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AlexNet (2012) VGG (2014) GoogleNet (2014)

Deep = Many hidden layers

—_—
Special
structure
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16.4%

AlexNet VGG
(2012) (2014)

GoogleNet Residual Net Taipei

(2014) (2015) 101

Universality Theorem

Any continuous function f
f:R" > R"

Can be realized by a network
with one hidden layer

Reference for the reason:

(glven enough hidden http:/neuralnetworksanddeep
neurons) learning.com/chap4.html

Why “Deep” neural network not “Fat” neural network?

Famous CNN Models

byghision

1oun oo

1989

1979
1

“You need a lot of a data if you want to train/use CNNs”

132

Eg: Cycle riding

Drivers of ML success in industry.

133




When to Use Transfer Learning?

Situation where what has been learned in one setting is exploited to
improve generalization in another setting.

Task A and B have the same input x
You have a lot more data for Task A than Task B.
Low level features from A could be helpful for learning B.

Transfer Learning Process

1. Select a pre-trained model

2. Classify your problem according to the Size-Similarity Matrix

3. Fine-tune model.

WARNING :

Don’t use this until you know the maths in the background

Challenge: Real-World Applications

Rei 2/ .
cninder Open Challenges. Two Options:

Supervised leaming: K .

teach by example 1. Real world observation + one-shot trial & error

Reinforcement learning:
teach by expericnce

2. Realistic simulation + transfer learning
1. Improve
Transfer
Learning

2. Improve
~ Simulation

Learning Map

Semi-supervised Transfer

Regression Learning Learning

Unsupervised Reinforcement
Learning Learning

L, Structured
Learning

Non-linear Model

Supervised Learning

Next

* Module 9: Al Applications & Ethics
—PART 9.1 : Computer Vision and Robotics
— PART 9.2 : Natural language understanding
—PART 9.3 : Al in Healthcare
— PART 9.4 : Ethics of Al




